Computation of U and V, the two sufficient statistics of the likelihood of the mixed SDE dXj(t)=(αj−βjXj(t))dt+σa(Xj(t))dWj(t).
UV(X, model, random, fixed, times)
Arguments
X: matrix of the M trajectories.
model: name of the SDE: 'OU' (Ornstein-Uhlenbeck) or 'CIR' (Cox-Ingersoll-Ross).
random: random effects in the drift: 1 if one additive random effect, 2 if one multiplicative random effect or c(1,2) if 2 random effects.
fixed: fixed effects in the drift: value of the fixed effect when there is only one random effect, 0 otherwise.
times: times vector of observation times.
Returns
U: vector of the M statistics U(Tend)
V: list of the M matrices V(Tend)
Details
Computation of U and V, the two sufficient statistics of the likelihood of the mixed SDE dXj(t)=(αj−βjXj(t))dt+σa(Xj(t))dWj(t)=(αj,βj)b(Xj(t))dt+σa(Xj(t))dWj(t) with b(x)=(1,−x)t:
U : U(Tend)=∫0Tendb(X(s))/a2(X(s))dX(s)
V : V(Tend)=∫0Tendb(X(s))2/a2(X(s))ds
References
See Bidimensional random effect estimation in mixed stochastic differential model, C. Dion and V. Genon-Catalot, Stochastic Inference for Stochastic Processes 2015, Springer Netherlands 1-28