invariant: logical(1), if TRUE, the initial value is from the invariant distribution XtN(α/β,σ2/2β) for the OU and XtΓ(2α/σ2,σ2/2β) for the CIR process, if FALSE (default) X0 is fixed from the data starting points
level: alpha for the predicion intervals, default 0.05
newwindow: logical(1), if TRUE, a new window is opened for the plot
plot.pred: logical(1), if TRUE, the results are depicted grafically
plot.legend: logical(1), if TRUE, a legend is added to the plot
burnIn: optional, if missing, the proposed value of the mixedsde.fit function is taken
thinning: optional, if missing, the proposed value of the mixedsde.fit function is taken
only.interval: logical(1), if TRUE, only prediction intervals are calculated, much faster than sampling from the whole predictive distribution
sample.length: number of samples to be drawn from the predictive distribution, if only.interval = FALSE
cand.length: number of candidates for which the predictive density is calculated, i.e. the candidates to be drawn from
trajectories: logical(1), if TRUE, only trajectories are drawn from the point estimations instead of sampling from the predictive distribution, similar to the frequentist approach
ylim: optional
xlab: optional, default 'times'
ylab: optional, default 'X'
col: color for the prediction intervals, default 3
lwd: linewidth for the prediction intervals, default 3
...: optional plot parameters
References
Dion, C., Hermann, S. and Samson, A. (2016). Mixedsde: a R package to fit mixed stochastic differential equations.