F-test based model effect selection for linear models.
Adaptation of existing methods based on AIC/BIC.
forward(model, alpha = 0.2, full = FALSE, force.in) backward(model, alpha = 0.2, full = FALSE, hierarchy = TRUE, force.in) stepWise(model, alpha.enter = 0.15, alpha.remove = 0.15, full = FALSE) stepWiseBack(model, alpha.remove = 0.15, alpha.enter = 0.15, full = FALSE) wideForward(formula, data, alpha = 0.2, force.in = NULL)
model
: object class lm
to select effects from.formula
: formula
specifying all possible effects.data
: data.frame
corresponding to formula.alpha
: numeric
p-value cut-off for inclusion/exclusion.full
: logical
indicating extended output of forward/backward selection.force.in
: character
vector indicating effects to keep in all models.alpha.enter
: numeric
p-value cut-off for inclusion.alpha.remove
: numeric
p-value cut-off for exclusion.hierarchy
: logical
indicating if hierarchy should be forced in backward selection.F-based versions of built in stepwise methods.
The final linear model after selection is returned.
Kristian Hovde Liland
set.seed(0) data <- data.frame(y = rnorm(8), x = factor(c('a','a','a','a','b','b','b','b')), z = factor(c('a','a','b','b','a','a','b','b'))) mod <- lm(y ~ x + z, data=data) forward(mod) backward(mod) stepWise(mod) stepWiseBack(mod) # Forward selection for wide matrices (large number of predictors) set.seed(0) mydata <- data.frame(y = rnorm(6), X = matrix(rnorm(60),6,10)) fs <- wideForward(y ~ ., mydata) print(fs)