n_trials: an integer indicating how many trials to simulate
model: a string indicating the model to be fit to the data. Currently the options are "2_component", "3_component", "slots", and "slots_averaging".
kappa: a numeric value indicating the concentration parameter of the von Mises distribution to use in the simulations. Note, when simulating from the 2_component or 3_component model, if multiple values are provided to the set_size argument, kappa must be a vector of parameter values to use for each set size).
p_u: a numeric value indicating the probability of uniform guessing to use when simulating from the 2_component and 3_component models. Note, when simulating from the 2_component or 3_component model, if multiple values are provided to the set_size argument, p_u must be a vector of parameter values to use for each set size).
p_n: a numeric value indicating the probability of a non-target response when simulating from the 3_component model. Note, when simulating from the 2_component or 3_component model, if multiple values are provided to the set_size argument, p_n must be a vector of parameter values to use for each set size).
K: a numeric value indicating the capacity value to use when simulating from the slots and slots_averaging models.
set_size: a numeric value (or vector) indicating the set size(s) to use in the simulations
Returns
Returns a data frame containing simulated responses from the requested model per set-size (if applicable).
Examples
# simulate from the slots modelslots_data <- simulate_mixtur(n_trials =1000, model ="slots", kappa =8.2, K =2.5, set_size = c(2,4,6,8))# simulate one set size from the 3_component modelcomponent_data <- simulate_mixtur(n_trials =1000, model ="3_component", kappa =8.2, p_u =.1, p_n =.15, set_size =4)# simulate multiple set sizes from the 3_component modelcomponent_data_multiple_sets <- simulate_mixtur(n_trials =1000, model ="3_component", kappa = c(10,8,6), p_u = c(.1,.1,.1), p_n = c(.1,.15,.2), set_size = c(2,4,6))