mlr3mbo0.3.3 package

Flexible Bayesian Optimization

acqf

Syntactic Sugar Acquisition Function Construction

acqfs

Syntactic Sugar Acquisition Functions Construction

AcqFunction

Acquisition Function Base Class

acqo

Syntactic Sugar Acquisition Function Optimizer Construction

AcqOptimizer

Acquisition Function Optimizer

default_acqfunction

Default Acquisition Function

default_acqoptimizer

Default Acquisition Function Optimizer

default_gp

Default Gaussian Process

default_loop_function

Default Loop Function

default_result_assigner

Default Result Assigner

default_rf

Default Random Forest

default_surrogate

Default Surrogate

InputTrafo

Input Transformation Base Class

InputTrafoUnitcube

Input Transformation Unitcube

it

Syntactic Sugar Input Trafo Construction

loop_function

Loop Functions for Bayesian Optimization

mbo_defaults

Defaults for OptimizerMbo

mlr_acqfunctions_aei

Acquisition Function Augmented Expected Improvement

mlr_acqfunctions_cb

Acquisition Function Confidence Bound

mlr_acqfunctions_ehvi

Acquisition Function Expected Hypervolume Improvement

mlr_acqfunctions_ehvigh

Acquisition Function Expected Hypervolume Improvement via Gauss-Hermit...

mlr_acqfunctions_ei_log

Acquisition Function Expected Improvement on Log Scale

mlr_acqfunctions_ei

Acquisition Function Expected Improvement

mlr_acqfunctions_eips

Acquisition Function Expected Improvement Per Second

mlr_acqfunctions_mean

Acquisition Function Mean

mlr_acqfunctions_multi

Acquisition Function Wrapping Multiple Acquisition Functions

mlr_acqfunctions_pi

Acquisition Function Probability of Improvement

mlr_acqfunctions_sd

Acquisition Function Standard Deviation

mlr_acqfunctions_smsego

Acquisition Function SMS-EGO

mlr_acqfunctions_stochastic_cb

Acquisition Function Stochastic Confidence Bound

mlr_acqfunctions_stochastic_ei

Acquisition Function Stochastic Expected Improvement

mlr_acqfunctions

Dictionary of Acquisition Functions

mlr_input_trafos

Dictionary of Input Transformations

mlr_loop_functions_ego

Sequential Single-Objective Bayesian Optimization

mlr_loop_functions_emo

Sequential Multi-Objective Bayesian Optimization

mlr_loop_functions_mpcl

Single-Objective Bayesian Optimization via Multipoint Constant Liar

mlr_loop_functions_parego

Multi-Objective Bayesian Optimization via ParEGO

mlr_loop_functions_smsego

Sequential Multi-Objective Bayesian Optimization via SMS-EGO

mlr_loop_functions

Dictionary of Loop Functions

mlr_optimizers_adbo

Asynchronous Decentralized Bayesian Optimization

mlr_optimizers_async_mbo

Asynchronous Model Based Optimization

mlr_optimizers_mbo

Model Based Optimization

mlr_output_trafos

Dictionary of Output Transformations

mlr_result_assigners_archive

Result Assigner Based on the Archive

mlr_result_assigners_surrogate

Result Assigner Based on a Surrogate Mean Prediction

mlr_result_assigners

Dictionary of Result Assigners

mlr_tuners_adbo

TunerAsync using Asynchronous Decentralized Bayesian Optimization

mlr_tuners_async_mbo

TunerAsync using Asynchronous Model Based Optimization

mlr_tuners_mbo

TunerBatch using Model Based Optimization

mlr3mbo-package

mlr3mbo: Flexible Bayesian Optimization

ot

Syntactic Sugar Output Trafo Construction

OutputTrafo

Output Transformation Base Class

OutputTrafoLog

Output Transformation Log

OutputTrafoStandardize

Output Transformation Standardization

ras

Syntactic Sugar Result Assigner Construction

redis_available

Check if Redis Server is Available

ResultAssigner

Result Assigner Base Class

srlrn

Syntactic Sugar Surrogate Construction

Surrogate

Surrogate Model

SurrogateLearner

Surrogate Model Containing a Single Learner

SurrogateLearnerCollection

Surrogate Model Containing Multiple Learners

A modern and flexible approach to Bayesian Optimization / Model Based Optimization building on the 'bbotk' package. 'mlr3mbo' is a toolbox providing both ready-to-use optimization algorithms as well as their fundamental building blocks allowing for straightforward implementation of custom algorithms. Single- and multi-objective optimization is supported as well as mixed continuous, categorical and conditional search spaces. Moreover, using 'mlr3mbo' for hyperparameter optimization of machine learning models within the 'mlr3' ecosystem is straightforward via 'mlr3tuning'. Examples of ready-to-use optimization algorithms include Efficient Global Optimization by Jones et al. (1998) <doi:10.1023/A:1008306431147>, ParEGO by Knowles (2006) <doi:10.1109/TEVC.2005.851274> and SMS-EGO by Ponweiser et al. (2008) <doi:10.1007/978-3-540-87700-4_78>.

  • Maintainer: Marc Becker
  • License: LGPL-3
  • Last published: 2025-10-10