mlr3measures1.0.0 package

Performance Measures for 'mlr3'

acc

Classification Accuracy

ae

Absolute Error (per observation)

ape

Absolute Percentage Error (per observation)

auc

Area Under the ROC Curve

bacc

Balanced Accuracy

bbrier

Binary Brier Score

bias

Bias

binary_params

Binary Classification Parameters

ce

Classification Error

classif_params

Classification Parameters

confusion_matrix

Calculate Binary Confusion Matrix

dor

Diagnostic Odds Ratio

fbeta

F-beta Score

fdr

False Discovery Rate

fn

False Negatives

fnr

False Negative Rate

fomr

False Omission Rate

fp

False Positives

fpr

False Positive Rate

gmean

Geometric Mean of Recall and Specificity

gpr

Geometric Mean of Precision and Recall

jaccard

Jaccard Similarity Index

ktau

Kendall's tau

linex

Linear-Exponential Loss (per observation)

logloss

Log Loss

mae

Mean Absolute Error

mape

Mean Absolute Percent Error

mauc_aunu

Multiclass AUC Scores

maxae

Max Absolute Error

maxse

Max Squared Error

mbrier

Multiclass Brier Score

mcc

Matthews Correlation Coefficient

measures

Measure Registry

medae

Median Absolute Error

medse

Median Squared Error

mlr3measures-package

mlr3measures: Performance Measures for 'mlr3'

mse

Mean Squared Error

msle

Mean Squared Log Error

npv

Negative Predictive Value

pbias

Percent Bias

phi

Phi Coefficient Similarity

pinball

Average Pinball Loss

ppv

Positive Predictive Value

prauc

Area Under the Precision-Recall Curve

rae

Relative Absolute Error

regr_params

Regression Parameters

rmse

Root Mean Squared Error

rmsle

Root Mean Squared Log Error

rrse

Root Relative Squared Error

rse

Relative Squared Error

rsq

R Squared

sae

Sum of Absolute Errors

se

Squared Error (per observation)

similarity_params

Similarity Parameters

sle

Squared Log Error (per observation)

smape

Symmetric Mean Absolute Percent Error

srho

Spearman's rho

sse

Sum of Squared Errors

tn

True Negatives

tnr

True Negative Rate

tp

True Positives

tpr

True Positive Rate

zero_one

Zero-One Classification Loss (per observation)

Implements multiple performance measures for supervised learning. Includes over 40 measures for regression and classification. Additionally, meta information about the performance measures can be queried, e.g. what the best and worst possible performances scores are.

  • Maintainer: Marc Becker
  • License: LGPL-3
  • Last published: 2024-09-11