autoplot.ResamplingSpCVBlock function

Visualization Functions for SpCV Block Methods.

Visualization Functions for SpCV Block Methods.

Generic S3 plot() and autoplot() (ggplot2) methods to visualize mlr3 spatiotemporal resampling objects.

## S3 method for class 'ResamplingSpCVBlock' autoplot( object, task, fold_id = NULL, plot_as_grid = TRUE, train_color = "#0072B5", test_color = "#E18727", show_blocks = FALSE, show_labels = FALSE, sample_fold_n = NULL, label_size = 2, ... ) ## S3 method for class 'ResamplingRepeatedSpCVBlock' autoplot( object, task, fold_id = NULL, repeats_id = 1, plot_as_grid = TRUE, train_color = "#0072B5", test_color = "#E18727", show_blocks = FALSE, show_labels = FALSE, sample_fold_n = NULL, label_size = 2, ... ) ## S3 method for class 'ResamplingSpCVBlock' plot(x, ...) ## S3 method for class 'ResamplingRepeatedSpCVBlock' plot(x, ...)

Arguments

  • object: [Resampling]

    mlr3 spatial resampling object of class ResamplingSpCVBlock or ResamplingRepeatedSpCVBlock .

  • task: [TaskClassifST]/[TaskRegrST]

    mlr3 task object.

  • fold_id: [numeric]

    Fold IDs to plot.

  • plot_as_grid: [logical(1)]

    Should a gridded plot using via list("patchwork") be created? If FALSE

    a list with of list("ggplot2") objects is returned. Only applies if a numeric vector is passed to argument fold_id.

  • train_color: [character(1)]

    The color to use for the training set observations.

  • test_color: [character(1)]

    The color to use for the test set observations.

  • show_blocks: [logical(1)]

    Whether to show an overlay of the spatial blocks polygons.

  • show_labels: [logical(1)]

    Whether to show an overlay of the spatial block IDs.

  • sample_fold_n: [integer]

    Number of points in a random sample stratified over partitions. This argument aims to keep file sizes of resulting plots reasonable and reduce overplotting in dense datasets.

  • label_size: [numeric(1)]

    Label size of block labels. Only applies for show_labels = TRUE.

  • ...: Passed to geom_sf(). Helpful for adjusting point sizes and shapes.

  • repeats_id: [numeric]

    Repetition ID to plot.

  • x: [Resampling]

    mlr3 spatial resampling object. One of class ResamplingSpCVBuffer , ResamplingSpCVBlock , ResamplingSpCVCoords , ResamplingSpCVEnv .

Returns

ggplot2::ggplot() or list of ggplot2 objects.

Details

By default a plot is returned; if fold_id is set, a gridded plot is created. If plot_as_grid = FALSE, a list of plot objects is returned. This can be used to align the plots individually.

When no single fold is selected, the ggsci::scale_color_ucscgb() palette is used to display all partitions. If you want to change the colors, call <plot> + <color-palette>().

Examples

if (mlr3misc::require_namespaces(c("sf", "blockCV"), quietly = TRUE)) { library(mlr3) library(mlr3spatiotempcv) task = tsk("ecuador") resampling = rsmp("spcv_block", range = 1000L) resampling$instantiate(task) ## list of ggplot2 resamplings plot_list = autoplot(resampling, task, crs = 4326, fold_id = c(1, 2), plot_as_grid = FALSE) ## Visualize all partitions autoplot(resampling, task) + ggplot2::scale_x_continuous(breaks = seq(-79.085, -79.055, 0.01)) ## Visualize the train/test split of a single fold autoplot(resampling, task, fold_id = 1) + ggplot2::scale_x_continuous(breaks = seq(-79.085, -79.055, 0.01)) ## Visualize train/test splits of multiple folds autoplot(resampling, task, fold_id = c(1, 2), show_blocks = TRUE) * ggplot2::scale_x_continuous(breaks = seq(-79.085, -79.055, 0.01)) }

See Also

  • mlr3book chapter on "Spatial Analysis"
  • autoplot.ResamplingSpCVBuffer()
  • autoplot.ResamplingSpCVCoords()
  • autoplot.ResamplingSpCVEnv()
  • autoplot.ResamplingSpCVDisc()
  • autoplot.ResamplingSpCVTiles()
  • autoplot.ResamplingCV()
  • autoplot.ResamplingSptCVCstf()