Visualization Functions for SpCV Buffer Methods.
Generic S3 plot()
and autoplot()
(ggplot2) methods to visualize mlr3 spatiotemporal resampling objects.
## S3 method for class 'ResamplingSpCVBuffer' autoplot( object, task, fold_id = NULL, plot_as_grid = TRUE, train_color = "#0072B5", test_color = "#E18727", show_omitted = FALSE, ... ) ## S3 method for class 'ResamplingSpCVBuffer' plot(x, ...)
object
: [Resampling]
mlr3 spatial resampling object of class ResamplingSpCVBuffer .
task
: [TaskClassifST]/[TaskRegrST]
mlr3 task object.
fold_id
: [numeric]
Fold IDs to plot.
plot_as_grid
: [logical(1)]
Should a gridded plot using via list("patchwork") be created? If FALSE
a list with of list("ggplot2") objects is returned. Only applies if a numeric vector is passed to argument fold_id
.
train_color
: [character(1)]
The color to use for the training set observations.
test_color
: [character(1)]
The color to use for the test set observations.
show_omitted
: [logical]
Whether to show points not used in train or test set for the current fold.
...
: Passed to geom_sf()
. Helpful for adjusting point sizes and shapes.
x
: [Resampling]
mlr3 spatial resampling object of class ResamplingSpCVBuffer .
if (mlr3misc::require_namespaces(c("sf", "blockCV"), quietly = TRUE)) { library(mlr3) library(mlr3spatiotempcv) task = tsk("ecuador") resampling = rsmp("spcv_buffer", theRange = 1000) resampling$instantiate(task) ## single fold autoplot(resampling, task, fold_id = 1) + ggplot2::scale_x_continuous(breaks = seq(-79.085, -79.055, 0.01)) ## multiple folds autoplot(resampling, task, fold_id = c(1, 2)) * ggplot2::scale_x_continuous(breaks = seq(-79.085, -79.055, 0.01)) }
autoplot.ResamplingSpCVBlock()
autoplot.ResamplingSpCVCoords()
autoplot.ResamplingSpCVEnv()
autoplot.ResamplingCV()
autoplot.ResamplingSptCVCstf()
Useful links