mlr3spatiotempcv: Spatiotemporal Resampling Methods for 'mlr3'
Extends the mlr3 machine learning framework with spatio-temporal resampling methods to account for the presence of spatiotemporal autocorrelation (STAC) in predictor variables. STAC may cause highly biased performance estimates in cross-validation if ignored. A JSS article is available at tools:::Rd_expr_doi("10.18637/jss.v111.i07") . package
mlr3
contentmlr3
objects: list("mlr3viz")Schratz P, Muenchow J, Iturritxa E, Richter J, Brenning A (2019). Hyperparameter tuning and performance assessment of statistical andmachine-learning algorithms using spatial data.
Ecological Modelling, 406 , 109--120. tools:::Rd_expr_doi("10.1016/j.ecolmodel.2019.06.002") .
Valavi R, Elith J, Lahoz-Monfort JJ, Guillera-Arroita G (2018). blockCV: an R package for generating spatially or environmentallyseparated folds for k-fold cross-validation of species distributionmodels.
bioRxiv. tools:::Rd_expr_doi("10.1101/357798") .
Meyer H, Reudenbach C, Hengl T, Katurji M, Nauss T (2018). Improving performance of spatio-temporal machine learning models usingforward feature selection and target-oriented validation.
Environmental Modelling & Software, 101 , 1--9. tools:::Rd_expr_doi("10.1016/j.envsoft.2017.12.001") .
Zhao Y, Karypis G (2002). Evaluation of Hierarchical Clustering Algorithms for Document Datasets.
11th Conference of Information and Knowledge Management (CIKM), 51-524. tools:::Rd_expr_doi("https://doi.org/10.1145/584792.584877") .
Useful links:
Maintainer : Patrick Schratz patrick.schratz@gmail.com (ORCID)
Authors:
Other contributors:
Useful links