mlr_resamplings_repeated_spcv_coords function

(sperrorest) Repeated coordinate-based k-means clustering

(sperrorest) Repeated coordinate-based k-means clustering

Splits data by clustering in the coordinate space. See the upstream implementation at sperrorest::partition_kmeans() and Brenning (2012) for further information.

Details

Universal partitioning method that splits the data in the coordinate space. Useful for spatially homogeneous datasets that cannot be split well with rectangular approaches like ResamplingSpCVBlock.

Parameters

  • folds (integer(1))

    Number of folds.

  • repeats (integer(1))

    Number of repeats.

Examples

library(mlr3) task = tsk("diplodia") # Instantiate Resampling rrcv = rsmp("repeated_spcv_coords", folds = 3, repeats = 5) rrcv$instantiate(task) # Individual sets: rrcv$iters rrcv$folds(1:6) rrcv$repeats(1:6) # Individual sets: rrcv$train_set(1) rrcv$test_set(1) intersect(rrcv$train_set(1), rrcv$test_set(1)) # Internal storage: rrcv$instance # table

References

Brenning A (2012). Spatial cross-validation and bootstrap for the assessment of predictionrules in remote sensing: The R package sperrorest.

In 2012 IEEE International Geoscience and Remote Sensing Symposium. tools:::Rd_expr_doi("10.1109/igarss.2012.6352393") .

Super class

mlr3::Resampling -> ResamplingRepeatedSpCVCoords

Active bindings

  • iters: integer(1)

     Returns the number of resampling iterations, depending on the values stored in the `param_set`.
    

Methods

Public methods

Method new()

Create an "coordinate-based" repeated resampling instance.

For a list of available arguments, please see sperrorest::partition_cv .

Usage

ResamplingRepeatedSpCVCoords$new(id = "repeated_spcv_coords")

Arguments

  • id: character(1)

     Identifier for the resampling strategy.
    

Method folds()

Translates iteration numbers to fold number.

Usage

ResamplingRepeatedSpCVCoords$folds(iters)

Arguments

  • iters: integer()

     Iteration number.
    

Method repeats()

Translates iteration numbers to repetition number.

Usage

ResamplingRepeatedSpCVCoords$repeats(iters)

Arguments

  • iters: integer()

     Iteration number.
    

Method instantiate()

Materializes fixed training and test splits for a given task.

Usage

ResamplingRepeatedSpCVCoords$instantiate(task)

Arguments

  • task: mlr3::Task

     A task to instantiate.
    

Method clone()

The objects of this class are cloneable with this method.

Usage

ResamplingRepeatedSpCVCoords$clone(deep = FALSE)

Arguments

  • deep: Whether to make a deep clone.