(sperrorest) Repeated spatial "disc" resampling
(sperrorest) Repeated spatial "disc" resampling
(sperrorest) Repeated spatial "disc" resampling
repeats
(integer(1)
)
Number of repeats.
library(mlr3) task = tsk("ecuador") # Instantiate Resampling rrcv = rsmp("repeated_spcv_disc", folds = 3L, repeats = 2, radius = 200L, buffer = 200L) rrcv$instantiate(task) # Individual sets: rrcv$iters rrcv$folds(1:6) rrcv$repeats(1:6) # Individual sets: rrcv$train_set(1) rrcv$test_set(1) intersect(rrcv$train_set(1), rrcv$test_set(1)) # Internal storage: rrcv$instance # table
Brenning A (2012). Spatial cross-validation and bootstrap for the assessment of predictionrules in remote sensing: The R package sperrorest.
In 2012 IEEE International Geoscience and Remote Sensing Symposium. tools:::Rd_expr_doi("10.1109/igarss.2012.6352393") .
mlr3::Resampling
-> ResamplingRepeatedSpCVDisc
iters
: integer(1)
Returns the number of resampling iterations, depending on the values stored in the `param_set`.
new()
Create a "Spatial 'Disc' resampling" resampling instance.
For a list of available arguments, please see sperrorest::partition_disc .
ResamplingRepeatedSpCVDisc$new(id = "repeated_spcv_disc")
id
: character(1)
Identifier for the resampling strategy.
folds()
Translates iteration numbers to fold number.
ResamplingRepeatedSpCVDisc$folds(iters)
iters
: integer()
Iteration number.
repeats()
Translates iteration numbers to repetition number.
ResamplingRepeatedSpCVDisc$repeats(iters)
iters
: integer()
Iteration number.
instantiate()
Materializes fixed training and test splits for a given task.
ResamplingRepeatedSpCVDisc$instantiate(task)
task
: mlr3::Task
A task to instantiate.
clone()
The objects of this class are cloneable with this method.
ResamplingRepeatedSpCVDisc$clone(deep = FALSE)
deep
: Whether to make a deep clone.
Useful links