mlr_resamplings_repeated_spcv_env function

(blockCV) Repeated "environmental blocking" resampling

(blockCV) Repeated "environmental blocking" resampling

Splits data by clustering in the feature space. See the upstream implementation at blockCV::cv_cluster() and Valavi et al. (2018) for further information.

Details

Useful when the dataset is supposed to be split on environmental information which is present in features. The method allows for a combination of multiple features for clustering.

The input of raster images directly as in blockCV::cv_cluster() is not supported. See list("mlr3spatial") and its raster DataBackends for such support in list("mlr3").

Parameters

  • folds (integer(1))

    Number of folds.

  • features (character())

    The features to use for clustering.

  • repeats (integer(1))

    Number of repeats.

Examples

if (mlr3misc::require_namespaces(c("sf", "blockCV"), quietly = TRUE)) { library(mlr3) task = tsk("ecuador") # Instantiate Resampling rrcv = rsmp("repeated_spcv_env", folds = 4, repeats = 2) rrcv$instantiate(task) # Individual sets: rrcv$train_set(1) rrcv$test_set(1) intersect(rrcv$train_set(1), rrcv$test_set(1)) # Internal storage: rrcv$instance }

References

Valavi R, Elith J, Lahoz-Monfort JJ, Guillera-Arroita G (2018). blockCV: an R package for generating spatially or environmentallyseparated folds for k-fold cross-validation of species distributionmodels.

bioRxiv. tools:::Rd_expr_doi("10.1101/357798") .

Super class

mlr3::Resampling -> ResamplingRepeatedSpCVEnv

Active bindings

  • iters: integer(1)

     Returns the number of resampling iterations, depending on the values stored in the `param_set`.
    

Methods

Public methods

Method new()

Create an "Environmental Block" repeated resampling instance.

For a list of available arguments, please see blockCV::cv_cluster .

Usage

ResamplingRepeatedSpCVEnv$new(id = "repeated_spcv_env")

Arguments

  • id: character(1)

     Identifier for the resampling strategy.
    

Method folds()

Translates iteration numbers to fold number.

Usage

ResamplingRepeatedSpCVEnv$folds(iters)

Arguments

  • iters: integer()

     Iteration number.
    

Method repeats()

Translates iteration numbers to repetition number.

Usage

ResamplingRepeatedSpCVEnv$repeats(iters)

Arguments

  • iters: integer()

     Iteration number.
    

Method instantiate()

Materializes fixed training and test splits for a given task.

Usage

ResamplingRepeatedSpCVEnv$instantiate(task)

Arguments

  • task: mlr3::Task

     A task to instantiate.
    

Method clone()

The objects of this class are cloneable with this method.

Usage

ResamplingRepeatedSpCVEnv$clone(deep = FALSE)

Arguments

  • deep: Whether to make a deep clone.