Splits data by clustering in the coordinate space. See the upstream implementation at sperrorest::partition_kmeans() and Brenning (2012) for further information.
Details
Universal partitioning method that splits the data in the coordinate space. Useful for spatially homogeneous datasets that cannot be split well with rectangular approaches like ResamplingSpCVBlock.
Parameters
folds (integer(1))
Number of folds.
Examples
library(mlr3)task = tsk("ecuador")# Instantiate Resamplingrcv = rsmp("spcv_coords", folds =5)rcv$instantiate(task)# Individual sets:rcv$train_set(1)rcv$test_set(1)# check that no obs are in both setsintersect(rcv$train_set(1), rcv$test_set(1))# good!# Internal storage:rcv$instance # table
References
Brenning A (2012). Spatial cross-validation and bootstrap for the assessment of predictionrules in remote sensing: The R package sperrorest.
In 2012 IEEE International Geoscience and Remote Sensing Symposium. tools:::Rd_expr_doi("10.1109/igarss.2012.6352393") .
Super class
mlr3::Resampling -> ResamplingSpCVCoords
Active bindings
iters: integer(1)
Returns the number of resampling iterations, depending on the values stored in the `param_set`.