mlr_resamplings_spcv_coords function

(sperrorest) Coordinate-based k-means clustering

(sperrorest) Coordinate-based k-means clustering

Splits data by clustering in the coordinate space. See the upstream implementation at sperrorest::partition_kmeans() and Brenning (2012) for further information.

Details

Universal partitioning method that splits the data in the coordinate space. Useful for spatially homogeneous datasets that cannot be split well with rectangular approaches like ResamplingSpCVBlock.

Parameters

  • folds (integer(1))

    Number of folds.

Examples

library(mlr3) task = tsk("ecuador") # Instantiate Resampling rcv = rsmp("spcv_coords", folds = 5) rcv$instantiate(task) # Individual sets: rcv$train_set(1) rcv$test_set(1) # check that no obs are in both sets intersect(rcv$train_set(1), rcv$test_set(1)) # good! # Internal storage: rcv$instance # table

References

Brenning A (2012). Spatial cross-validation and bootstrap for the assessment of predictionrules in remote sensing: The R package sperrorest.

In 2012 IEEE International Geoscience and Remote Sensing Symposium. tools:::Rd_expr_doi("10.1109/igarss.2012.6352393") .

Super class

mlr3::Resampling -> ResamplingSpCVCoords

Active bindings

  • iters: integer(1)

     Returns the number of resampling iterations, depending on the values stored in the `param_set`.
    

Methods

Public methods

Method new()

Create an "coordinate-based" repeated resampling instance.

For a list of available arguments, please see sperrorest::partition_cv .

Usage

ResamplingSpCVCoords$new(id = "spcv_coords")

Arguments

  • id: character(1)

     Identifier for the resampling strategy.
    

Method instantiate()

Materializes fixed training and test splits for a given task.

Usage

ResamplingSpCVCoords$instantiate(task)

Arguments

  • task: mlr3::Task

     A task to instantiate.
    

Method clone()

The objects of this class are cloneable with this method.

Usage

ResamplingSpCVCoords$clone(deep = FALSE)

Arguments

  • deep: Whether to make a deep clone.