mlr_callback_set.history function

History Callback

History Callback

Saves the training and validation history during training. The history is saved as a data.table where the validation measures are prefixed with "valid."

and the training measures are prefixed with "train.".

Examples

cb = t_clbk("history") task = tsk("iris") learner = lrn("classif.mlp", epochs = 3, batch_size = 1, callbacks = t_clbk("history"), validate = 0.3) learner$param_set$set_values( measures_train = msrs(c("classif.acc", "classif.ce")), measures_valid = msr("classif.ce") ) learner$train(task) print(learner$model$callbacks$history)

Super class

mlr3torch::CallbackSet -> CallbackSetHistory

Methods

Public methods

Method on_begin()

Initializes lists where the train and validation metrics are stored.

Usage

CallbackSetHistory$on_begin()

Method state_dict()

Converts the lists to data.tables.

Usage

CallbackSetHistory$state_dict()

Method load_state_dict()

Sets the field $train and $valid to those contained in the state dict.

Usage

CallbackSetHistory$load_state_dict(state_dict)

Arguments

  • state_dict: (callback_state_history)

     The state dict as retrieved via `$state_dict()`.
    

Method on_before_valid()

Add the latest training scores to the history.

Usage

CallbackSetHistory$on_before_valid()

Method on_epoch_end()

Add the latest validation scores to the history.

Usage

CallbackSetHistory$on_epoch_end()

Method clone()

The objects of this class are cloneable with this method.

Usage

CallbackSetHistory$clone(deep = FALSE)

Arguments

  • deep: Whether to make a deep clone.