mlr_callback_set.progress function

Progress Callback

Progress Callback

Prints a progress bar and the metrics for training and validation.

Examples

task = tsk("iris") learner = lrn("classif.mlp", epochs = 5, batch_size = 1, callbacks = t_clbk("progress"), validate = 0.3) learner$param_set$set_values( measures_train = msrs(c("classif.acc", "classif.ce")), measures_valid = msr("classif.ce") ) learner$train(task)

See Also

Other Callback: TorchCallback, as_torch_callback(), as_torch_callbacks(), callback_set(), mlr3torch_callbacks, mlr_callback_set, mlr_callback_set.checkpoint, mlr_callback_set.tb, mlr_callback_set.unfreeze, mlr_context_torch, t_clbk(), torch_callback()

Super class

mlr3torch::CallbackSet -> CallbackSetProgress

Methods

Public methods

Method on_epoch_begin()

Initializes the progress bar for training.

Usage

CallbackSetProgress$on_epoch_begin()

Method on_batch_end()

Increments the training progress bar.

Usage

CallbackSetProgress$on_batch_end()

Method on_before_valid()

Creates the progress bar for validation.

Usage

CallbackSetProgress$on_before_valid()

Method on_batch_valid_end()

Increments the validation progress bar.

Usage

CallbackSetProgress$on_batch_valid_end()

Method on_epoch_end()

Prints a summary of the training and validation process.

Usage

CallbackSetProgress$on_epoch_end()

Method on_end()

Prints the time at the end of training.

Usage

CallbackSetProgress$on_end()

Method clone()

The objects of this class are cloneable with this method.

Usage

CallbackSetProgress$clone(deep = FALSE)

Arguments

  • deep: Whether to make a deep clone.