Progress Callback
Prints a progress bar and the metrics for training and validation.
task = tsk("iris") learner = lrn("classif.mlp", epochs = 5, batch_size = 1, callbacks = t_clbk("progress"), validate = 0.3) learner$param_set$set_values( measures_train = msrs(c("classif.acc", "classif.ce")), measures_valid = msr("classif.ce") ) learner$train(task)
Other Callback: TorchCallback
, as_torch_callback()
, as_torch_callbacks()
, callback_set()
, mlr3torch_callbacks
, mlr_callback_set
, mlr_callback_set.checkpoint
, mlr_callback_set.tb
, mlr_callback_set.unfreeze
, mlr_context_torch
, t_clbk()
, torch_callback()
mlr3torch::CallbackSet
-> CallbackSetProgress
on_epoch_begin()
Initializes the progress bar for training.
CallbackSetProgress$on_epoch_begin()
on_batch_end()
Increments the training progress bar.
CallbackSetProgress$on_batch_end()
on_before_valid()
Creates the progress bar for validation.
CallbackSetProgress$on_before_valid()
on_batch_valid_end()
Increments the validation progress bar.
CallbackSetProgress$on_batch_valid_end()
on_epoch_end()
Prints a summary of the training and validation process.
CallbackSetProgress$on_epoch_end()
on_end()
Prints the time at the end of training.
CallbackSetProgress$on_end()
clone()
The objects of this class are cloneable with this method.
CallbackSetProgress$clone(deep = FALSE)
deep
: Whether to make a deep clone.
Useful links