Alternative way to specify the latent dimension as d_block * d_hidden_multiplier.
dropout1 :: numeric(1)
First dropout ratio.
dropout2 :: numeric(1)
Second dropout ratio.
Examples
# Define the Learner and set parameter valueslearner = lrn("classif.tab_resnet")learner$param_set$set_values( epochs =1, batch_size =16, device ="cpu", n_blocks =2, d_block =10, d_hidden =20, dropout1 =0.3, dropout2 =0.3)# Define a Tasktask = tsk("iris")# Create train and test setids = partition(task)# Train the learner on the training idslearner$train(task, row_ids = ids$train)# Make predictions for the test rowspredictions = learner$predict(task, row_ids = ids$test)# Score the predictionspredictions$score()
References
Gorishniy Y, Rubachev I, Khrulkov V, Babenko A (2021). Revisiting Deep Learning for Tabular Data.
arXiv, 2106.11959 .
See Also
Other Learner: mlr_learners.mlp, mlr_learners.torch_featureless, mlr_learners_torch, mlr_learners_torch_image, mlr_learners_torch_model