mmcif_start_values function

Finds Staring Values

Finds Staring Values

Fast heuristic for finding starting values for the mixed cumulative incidence functions model.

mmcif_start_values(object, n_threads = 1L, vcov_start = NULL)

Arguments

  • object: an object from mmcif_data.
  • n_threads: the number of threads to use.
  • vcov_start: starting value for the covariance matrix of the random effects. NULL yields the identity matrix.

Returns

A list with

  • an element called "full" with the starting value where the last components are the covariance matrix.
  • an element called "upper" the staring values where the covariance matrix is stored as a log Cholesky decomposition. This is used e.g. for optimization with mmcif_fit.

Examples

if(require(mets)){ # prepare the data data(prt) # truncate the time max_time <- 90 prt <- within(prt, { status[time >= max_time] <- 0 time <- pmin(time, max_time) }) # select the DZ twins and re-code the status prt_use <- subset(prt, zyg == "DZ") |> transform(status = ifelse(status == 0, 3L, status)) # randomly sub-sample set.seed(1) prt_use <- subset( prt_use, id %in% sample(unique(id), length(unique(id)) %/% 10L)) n_threads <- 2L mmcif_obj <- mmcif_data( ~ country - 1, prt_use, status, time, id, max_time, 2L, strata = country) # get the staring values start_vals <- mmcif_start_values(mmcif_obj, n_threads = n_threads) # the starting values print(start_vals) }
  • Maintainer: Benjamin Christoffersen
  • License: GPL (>= 3)
  • Last published: 2022-07-17