mme0.1-6 package

Multinomial Mixed Effects Models

addtolist

Add items from a list

addtomatrix

Add rows from a matrix

ci

Standard deviation and p-values of the estimated model parameters

data.mme

Function to generate matrices and the initial values

Fbetaf.ct

Inverse of the Fisher information matrix of fixed and random effects i...

Fbetaf.it

The inverse of the Fisher information matrix of the fixed and random e...

Fbetaf

Inverse of the Fisher information matrix of the fixed and random effec...

initial.values

Initial values for fitting algorithm to estimate the fixed and random ...

mme-package

Multinomial Mixed Effects Models

mmedata

Create objects of class mmedata

model

Choose between the three models

modelfit1

Function used to fit Model 1

modelfit2

Function to fit Model 2

modelfit3

Function used to fit Model 3

mseb

Bias and MSE using parametric bootstrap

msef.ct

Analytic MSE for Model 3

msef.it

Analytic MSE for Model 2

msef

Analytic MSE for Model 1

omega

Model correlation matrix for Model 3

phi.direct.ct

Variance components for Model 3

phi.direct.it

Variance components for Model 2

phi.direct

Variance components for Model 1

phi.mult.ct

Initial values for the variance components in Model 3

phi.mult.it

Initial values for the variance components in Model 2

phi.mult

Initial values for the variance components for Model 1

print.mme

Print objects of class mme

prmu

Estimated mean and probabilities for Model 1

prmu.time

Estimated mean and probabilities for Model 2 and 3

sPhikf.ct

Fisher information matrix and score vectors of the variance components...

sPhikf.it

Fisher information matrix and score vectors of the variance components...

sPhikf

Fisher information matrix and score vectors of the variance components...

wmatrix

Model variance-covariance matrix of the multinomial mixed models

Fit Gaussian Multinomial mixed-effects models for small area estimation: Model 1, with one random effect in each category of the response variable (Lopez-Vizcaino,E. et al., 2013) <doi:10.1177/1471082X13478873>; Model 2, introducing independent time effect; Model 3, introducing correlated time effect. mme calculates direct and parametric bootstrap MSE estimators (Lopez-Vizcaino,E et al., 2014) <doi:10.1111/rssa.12085>.

  • Maintainer: E. Lopez-Vizcaino
  • License: GPL (>= 2)
  • Last published: 2019-01-27