If p tends to infinity, this estimate tends to the Venter mode estimate; this justifies to call venter if p = Inf.
The user should either give the bandwidth bw or the argument k, k being taken equal to ceiling(bw*n) - 1 if missing.
Note
The user may call grenander through mlv(x, method = "grenander", bw, k, p, ...).
Examples
# Unimodal distributionx <- rnorm(1000, mean =23, sd =0.5)## True modenormMode(mean =23, sd =0.5)# (!)## Parameter 'k'k <-5## Many values of parameter 'p'ps <- seq(0.1,4,0.01)## Estimate of the mode with these parametersM <- sapply(ps,function(p) grenander(x, p = p, k = k))## Distribution obtainedplot(density(M), xlim = c(22.5,23.5))
References
Grenander U. (1965). Some direct estimates of the mode. Ann. Math. Statist., 36 :131-138.
Dalenius T. (1965). The Mode - A Negleted Statistical Parameter. J. Royal Statist. Soc. A, 128:110-117.
Adriano K.N., Gentle J.E. and Sposito V.A. (1977). On the asymptotic bias of Grenander's mode estimator. Commun. Statist.-Theor. Meth. A, 6 :773-776.
Hall P. (1982). Asymptotic Theory of Grenander's Mode Estimator. Z. Wahrsch. Verw. Gebiete, 60 :315-334.
See Also
mlv for general mode estimation; venter for the Venter mode estimate.
Author(s)
D.R. Bickel for the original code, P. Poncet for the slight modifications introduced.