The empirical Lientz function and the Lientz mode estimator
The empirical Lientz function and the Lientz mode estimator
The Lientz mode estimator is nothing but the value minimizing the empirical Lientz function. A 'plot' and a 'print' methods are provided.
lientz(x, bw =NULL)## S3 method for class 'lientz'plot(x, zoom =FALSE,...)## S3 method for class 'lientz'print(x, digits =NULL,...)## S3 method for class 'lientz'mlv(x, bw =NULL, abc =FALSE, par = shorth(x), optim.method ="BFGS",...)
Arguments
x: numeric (vector of observations) or an object of class "lientz".
bw: numeric. The smoothing bandwidth to be used. Should belong to (0, 1). Parameter 'beta' in Lientz (1970) function.
zoom: logical. If TRUE, one can zoom on the graph created.
...: if abc = FALSE, further arguments to be passed to optim, or further arguments to be passed to plot.
digits: numeric. Number of digits to be printed.
abc: logical. If FALSE (the default), the Lientz empirical function is minimised using optim.
par: numeric. The initial value used in optim.
optim.method: character. If abc = FALSE, the method used in optim.
Returns
lientz returns an object of class c("lientz", "function"); this is a function with additional attributes:
xthe x argument
bwthe bw argument
callthe call which produced the result
mlv.lientz returns a numeric value, the mode estimate. If abc = TRUE, the x value minimizing the Lientz empirical function is returned. Otherwise, the optim method is used to perform minimization, and the attributes: 'value', 'counts', 'convergence' and 'message', coming from the optim
method, are added to the result.
Details
The Lientz function is the smallest non-negative quantity S(x,b), where b = bw, such that
Lientz B.P. (1969). On estimating points of local maxima and minima of density functions. Nonparametric Techniques in Statistical Inference (ed. M.L. Puri, Cambridge University Press, p.275-282.
Lientz B.P. (1970). Results on nonparametric modal intervals. SIAM J. Appl. Math., 19 :356-366.
Lientz B.P. (1972). Properties of modal intervals. SIAM J. Appl. Math., 23 :1-5.
See Also
mlv for general mode estimation; shorth for the shorth estimate of the mode