venter function

The Venter / Dalenius / LMS mode estimator

The Venter / Dalenius / LMS mode estimator

This function computes the Venter mode estimator, also called the Dalenius, or LMS (Least Median Square) mode estimator.

venter( x, bw = NULL, k, iter = 1, type = 1, tie.action = "mean", tie.limit = 0.05, warn = FALSE ) shorth(x, ...)

Arguments

  • x: numeric. Vector of observations.
  • bw: numeric. The bandwidth to be used. Should belong to (0, 1]. See 'Details'.
  • k: numeric. See 'Details'.
  • iter: numeric. Number of iterations.
  • type: numeric or character. The type of Venter estimate to be computed. See 'Details'.
  • tie.action: character. The action to take if a tie is encountered.
  • tie.limit: numeric. A limit deciding whether or not a warning is given when a tie is encountered.
  • warn: logical. If TRUE, a warning is thrown when a tie is encountered.
  • ...: Further arguments.

Returns

A numeric value is returned, the mode estimate.

Details

The modal interval, i.e. the shortest interval among intervals containing k+1 observations, is first computed. (In dimension > 1, this question is known as a 'k-enclosing problem'.) The user should either give the bandwidth bw or the argument k, k being taken equal to ceiling(bw*n) - 1 if missing, so bw can be seen as the fraction of the observations to be considered for the shortest interval.

If type = 1, the midpoint of the modal interval is returned. If type = 2, the floor((k+1)/2)th element of the modal interval is returned. If type = 3 or type = "dalenius", the median of the modal interval is returned. If type = 4 or type = "shorth", the mean of the modal interval is returned. If type = 5 or type = "ekblom", Ekblom's LinfinityL_{-infinity} estimate is returned, see Ekblom (1972). If type = 6 or type = "hsm", the half sample mode (hsm) is computed, see hsm.

Note

The user may call venter through mlv(x, method = "venter", ...).

Examples

library(evd) # Unimodal distribution x <- rgev(1000, loc = 23, scale = 1.5, shape = 0) ## True mode gevMode(loc = 23, scale = 1.5, shape = 0) ## Estimate of the mode venter(x, bw = 1/3) mlv(x, method = "venter", bw = 1/3)

References

  • Dalenius T. (1965). The Mode - A Negleted Statistical Parameter. J. Royal Statist. Soc. A, 128:110-117.
  • Venter J.H. (1967). On estimation of the mode. Ann. Math. Statist., 38 (5):1446-1455.
  • Ekblom H. (1972). A Monte Carlo investigation of mode estimators in small samples. Applied Statistics, 21 :177-184.
  • Leclerc J. (1997). Comportement limite fort de deux estimateurs du mode : le shorth et l'estimateur naif. C. R. Acad. Sci. Paris, Serie I, 325 (11):1207-1210.

See Also

mlv for general mode estimation, hsm for the half sample mode.

  • Maintainer: Paul Poncet
  • License: GPL-3
  • Last published: 2019-11-18