Robust EM-algorithm ER
The ER
function is an implementation of the ER-algorithm of Little and Smith (1987).
ER( data, weights, alpha = 0.01, psi.par = c(2, 1.25), em.steps = 100, steps.output = FALSE, Estep.output = FALSE, tolerance = 1e-06 )
data
: a data frame or matrix with the data.weights
: sampling weights.alpha
: probability for the quantile of the cut-off.psi.par
: further parameters passed to the psi-function.em.steps
: number of iteration steps of the EM-algorithm.steps.output
: if TRUE
, verbose output.Estep.output
: if TRUE
, estimators are output at each iteration.tolerance
: convergence criterion (relative change).sample.size
: Number of observationsnumber.of.variables
: Number of variablessignificance.level
: alphacomputation.time
: Elapsed computation timegood.data
: Indices of the data in the final good subsetoutliers
: Indices of the outlierscenter
: Final estimate of the centerscatter
: Final estimate of the covariance matrixdist
: Final Mahalanobis distancesrob.weights
: Robustness weights in the final EM stepThe M-step of the EM-algorithm uses a one-step M-estimator.
data(bushfirem, bushfire.weights) det.res <- ER(bushfirem, weights = bushfire.weights, alpha = 0.05, steps.output = TRUE, em.steps = 100, tol = 2e-6) PlotMD(det.res$dist, ncol(bushfirem))
Little, R. and P. Smith (1987). Editing and imputation for quantitative survey data. Journal of the American Statistical Association, 82, 58-68.
BEM
Beat Hulliger