ER function

Robust EM-algorithm ER

Robust EM-algorithm ER

The ER function is an implementation of the ER-algorithm of Little and Smith (1987).

ER( data, weights, alpha = 0.01, psi.par = c(2, 1.25), em.steps = 100, steps.output = FALSE, Estep.output = FALSE, tolerance = 1e-06 )

Arguments

  • data: a data frame or matrix with the data.
  • weights: sampling weights.
  • alpha: probability for the quantile of the cut-off.
  • psi.par: further parameters passed to the psi-function.
  • em.steps: number of iteration steps of the EM-algorithm.
  • steps.output: if TRUE, verbose output.
  • Estep.output: if TRUE, estimators are output at each iteration.
  • tolerance: convergence criterion (relative change).

Returns

  • sample.size: Number of observations
  • number.of.variables: Number of variables
  • significance.level: alpha
  • computation.time: Elapsed computation time
  • good.data: Indices of the data in the final good subset
  • outliers: Indices of the outliers
  • center: Final estimate of the center
  • scatter: Final estimate of the covariance matrix
  • dist: Final Mahalanobis distances
  • rob.weights: Robustness weights in the final EM step

Details

The M-step of the EM-algorithm uses a one-step M-estimator.

Examples

data(bushfirem, bushfire.weights) det.res <- ER(bushfirem, weights = bushfire.weights, alpha = 0.05, steps.output = TRUE, em.steps = 100, tol = 2e-6) PlotMD(det.res$dist, ncol(bushfirem))

References

Little, R. and P. Smith (1987). Editing and imputation for quantitative survey data. Journal of the American Statistical Association, 82, 58-68.

See Also

BEM

Author(s)

Beat Hulliger

  • Maintainer: Beat Hulliger
  • License: MIT + file LICENSE
  • Last published: 2023-03-14