Latent Interaction (and Moderation) Analysis in Structural Equation Models (SEM)
Bootstrap a modsem Model
Get Centered Interaction Term Estimates
Capture, colorise, and emit console text
compare model fit for modsem
models
default arguments fro LMS and QML approach
default arguments for product indicator approaches
Estimate baseline model for modsem
models
extract lavaan object from modsem object estimated using product indic...
Fit measures for QML and LMS models
Get data with product indicators for different approaches
Get lavaan
syntax for product indicator approaches
Wrapper for coef
Interaction between latent variables using LMS and QML approaches
Inspect model information
Estimate a modsem
model using multiple imputation
Estimation latent interactions through Mplus
Wrapper for nobs
Interaction between latent variables using product indicators
Predict From modsem
Models
Wrapper for vcov
modsem: Latent Interaction (and Moderation) Analysis in Structural Equ...
Estimate interaction effects in structural equation models (SEMs)
Generate parameter table for lavaan
syntax
Extract parameterEstimates from an estimated model
Plot Interaction Effects in a SEM Model
Plot Interaction Effect Using the Johnson-Neyman Technique
Plot Surface for Interaction Effects
Reliability‑Corrected Single‑Item SEM
Define or disable the color theme used by modsem
Get the simple slopes of a SEM model
Standardize a fitted modsem_da
model
Get Standardized Estimates
Summarize a parameter table from a modsem
model.
summary for modsem objects
Estimate formulas for (co-)variance paths using Wright's path tracing ...
Estimate interaction effects in structural equation models (SEMs) usin...
Extract or modify parTable from an estimated model with estimated vari...
Estimation of interaction (i.e., moderation) effects between latent variables in structural equation models (SEM). The supported methods are: The constrained approach (Algina & Moulder, 2001). The unconstrained approach (Marsh et al., 2004). The residual centering approach (Little et al., 2006). The double centering approach (Lin et al., 2010). The latent moderated structural equations (LMS) approach (Klein & Moosbrugger, 2000). The quasi-maximum likelihood (QML) approach (Klein & Muthén, 2007) The constrained- unconstrained, residual- and double centering- approaches are estimated via 'lavaan' (Rosseel, 2012), whilst the LMS- and QML- approaches are estimated via 'modsem' it self. Alternatively model can be estimated via 'Mplus' (Muthén & Muthén, 1998-2017). References: Algina, J., & Moulder, B. C. (2001). <doi:10.1207/S15328007SEM0801_3>. "A note on estimating the Jöreskog-Yang model for latent variable interaction using 'LISREL' 8.3." Klein, A., & Moosbrugger, H. (2000). <doi:10.1007/BF02296338>. "Maximum likelihood estimation of latent interaction effects with the LMS method." Klein, A. G., & Muthén, B. O. (2007). <doi:10.1080/00273170701710205>. "Quasi-maximum likelihood estimation of structural equation models with multiple interaction and quadratic effects." Lin, G. C., Wen, Z., Marsh, H. W., & Lin, H. S. (2010). <doi:10.1080/10705511.2010.488999>. "Structural equation models of latent interactions: Clarification of orthogonalizing and double-mean-centering strategies." Little, T. D., Bovaird, J. A., & Widaman, K. F. (2006). <doi:10.1207/s15328007sem1304_1>. "On the merits of orthogonalizing powered and product terms: Implications for modeling interactions among latent variables." Marsh, H. W., Wen, Z., & Hau, K. T. (2004). <doi:10.1037/1082-989X.9.3.275>. "Structural equation models of latent interactions: evaluation of alternative estimation strategies and indicator construction." Muthén, L.K. and Muthén, B.O. (1998-2017). "'Mplus' User’s Guide. Eighth Edition." <https://www.statmodel.com/>. Rosseel Y (2012). <doi:10.18637/jss.v048.i02>. "'lavaan': An R Package for Structural Equation Modeling."