negent2D function

Maximizing negentropy for q=2q = 2 dimensions

Maximizing negentropy for q=2q = 2 dimensions

Searches for the rotation that maximizes the estimated negentropy of the first column of the rotated data, for q=2q = 2 dimensional data.

negent2D(y, m = 100)

Arguments

  • y: The nx2n x 2 data matrix.
  • m: The number of angles (between 00 and π\pi) over which to search.

Returns

A list with the following components:

  • vectors: The 2?22 ? 2 orthogonal matrix G that optimizes the negentropy.
  • values: Estimated negentropies for the two rotated variables. The largest is first.

Examples

# Load iris data data(iris) # Centers and scales the variables. y <- scale(as.matrix(iris[, 1:2])) # Obtains Negent Vectors for 2 x 2 matrix gstar <- negent2D(y, m = 10)$vectors

See Also

negent, negent3D

  • Maintainer: James Balamuta
  • License: MIT + file LICENSE
  • Last published: 2020-10-31