Choosing a good pattern
Uses the stepwise procedure described in Section 13.1.4 to find a pattern for a set of observed eigenvalues with good BIC value.
pcbic.stepwise(eigenvals, n)
eigenvals
: The -vector of eigenvalues of the covariance matrix, in order from largest to smallest.n
: The degrees of freedom in the covariance matrix.A list with the following components:
# Build cars1 require("mclust") mcars <- Mclust(cars) cars1 <- cars[mcars$classification == 1, ] xcars <- scale(cars1) eg <- eigen(var(xcars)) pcbic.stepwise(eg$values, 95)
pcbic
, pcbic.unite
, and pcbic.subpatterns
.
Useful links