qda function

Quadratic discrimination

Quadratic discrimination

The function returns the elements needed to calculate the quadratic discrimination in (11.48). Use the output from this function in predict_qda (Section A.3.2) to find the predicted groups.

qda(x, y)

Arguments

  • x: The NxPN x P data matrix.
  • y: The NN-vector of group identities, assumed to be given by the numbers 1,...,KK for KK groups.

Returns

A list with the following components:

  • Mean: A PxKP x K matrix, where column KK contains the coefficents aka_k for (11.31). The final column is all zero.
  • Sigma: A KxPxPK x P x P array, where the Sigma[k,,] contains the sample covariance matrix for group kk, Σk^\hat{\Sigma_k}.
  • c: The KK-vector of constants ckc_k for (11.48).

Examples

# Load Iris Data data(iris) # Iris example x.iris <- as.matrix(iris[, 1:4]) # Gets group vector (1, ... , 1, 2, ... , 2, 3, ... , 3) y.iris <- rep(1:3, c(50, 50, 50)) # Perform QDA qd.iris <- qda(x.iris, y.iris)

See Also

predict_qda and lda

  • Maintainer: James Balamuta
  • License: MIT + file LICENSE
  • Last published: 2020-10-31