cld function

Set up a compact letter display of all pair-wise comparisons

Set up a compact letter display of all pair-wise comparisons

Extract information from glht, summary.glht or confint.glht objects which is required to create and plot compact letter displays of all pair-wise comparisons.

## S3 method for class 'summary.glht' cld(object, level = 0.05, decreasing = FALSE, ...) ## S3 method for class 'glht' cld(object, level = 0.05, decreasing = FALSE, ...) ## S3 method for class 'confint.glht' cld(object, decreasing = FALSE, ...)

Arguments

  • object: An object of class glht, summary.glht or confint.glht.
  • level: Significance-level to be used to term a specific pair-wise comparison significant.
  • decreasing: logical. Should the order of the letters be increasing or decreasing?
  • ...: additional arguments.

Details

This function extracts all the information from glht, summary.glht or confint.glht objects that is required to create a compact letter display of all pair-wise comparisons. In case the contrast matrix is not of type "Tukey", an error is issued. In case of confint.glht objects, a pair-wise comparison is termed significant whenever a particular confidence interval contains 0. Otherwise, p-values are compared to the value of "level". Once, this information is extracted, plotting of all pair-wise comparisons can be carried out.

Returns

An object of class cld, a list with items: - y: Values of the response variable of the original model.

  • yname: Name of the response variable.

  • x: Values of the variable used to compute Tukey contrasts.

  • weights: Weights used in the fitting process.

  • lp: Predictions from the fitted model.

  • covar: A logical indicating whether the fitted model contained covariates.

  • signif: Vector of logicals indicating significant differences with hyphenated names that identify pair-wise comparisons.

References

Hans-Peter Piepho (2004), An Algorithm for a Letter-Based Representation of All-Pairwise Comparisons, Journal of Computational and Graphical Statistics, 13 (2), 456--466.

See Also

glht

plot.cld

Examples

### multiple comparison procedures ### set up a one-way ANOVA data(warpbreaks) amod <- aov(breaks ~ tension, data = warpbreaks) ### specify all pair-wise comparisons among levels of variable "tension" tuk <- glht(amod, linfct = mcp(tension = "Tukey")) ### extract information tuk.cld <- cld(tuk) ### use sufficiently large upper margin old.par <- par(mai=c(1,1,1.25,1), no.readonly = TRUE) ### plot plot(tuk.cld) par(old.par) ### now using covariates data(warpbreaks) amod2 <- aov(breaks ~ tension + wool, data = warpbreaks) ### specify all pair-wise comparisons among levels of variable "tension" tuk2 <- glht(amod2, linfct = mcp(tension = "Tukey")) ### extract information tuk.cld2 <- cld(tuk2) ### use sufficiently large upper margin old.par <- par(mai=c(1,1,1.25,1), no.readonly = TRUE) ### plot using different colors plot(tuk.cld2, col=c("black", "red", "blue")) par(old.par) ### set up all pair-wise comparisons for count data data(Titanic) mod <- glm(Survived ~ Class, data = as.data.frame(Titanic), weights = Freq, family = binomial()) ### specify all pair-wise comparisons among levels of variable "Class" glht.mod <- glht(mod, mcp(Class = "Tukey")) ### extract information mod.cld <- cld(glht.mod) ### use sufficiently large upper margin old.par <- par(mai=c(1,1,1.5,1), no.readonly = TRUE) ### plot plot(mod.cld) par(old.par)