Set up a compact letter display of all pair-wise comparisons
Set up a compact letter display of all pair-wise comparisons
Extract information from glht, summary.glht or confint.glht objects which is required to create and plot compact letter displays of all pair-wise comparisons.
## S3 method for class 'summary.glht'cld(object, level =0.05, decreasing =FALSE,...)## S3 method for class 'glht'cld(object, level =0.05, decreasing =FALSE,...)## S3 method for class 'confint.glht'cld(object, decreasing =FALSE,...)
Arguments
object: An object of class glht, summary.glht or confint.glht.
level: Significance-level to be used to term a specific pair-wise comparison significant.
decreasing: logical. Should the order of the letters be increasing or decreasing?
...: additional arguments.
Details
This function extracts all the information from glht, summary.glht or confint.glht objects that is required to create a compact letter display of all pair-wise comparisons. In case the contrast matrix is not of type "Tukey", an error is issued. In case of confint.glht objects, a pair-wise comparison is termed significant whenever a particular confidence interval contains 0. Otherwise, p-values are compared to the value of "level". Once, this information is extracted, plotting of all pair-wise comparisons can be carried out.
Returns
An object of class cld, a list with items: - y: Values of the response variable of the original model.
yname: Name of the response variable.
x: Values of the variable used to compute Tukey contrasts.
weights: Weights used in the fitting process.
lp: Predictions from the fitted model.
covar: A logical indicating whether the fitted model contained covariates.
signif: Vector of logicals indicating significant differences with hyphenated names that identify pair-wise comparisons.
References
Hans-Peter Piepho (2004), An Algorithm for a Letter-Based Representation of All-Pairwise Comparisons, Journal of Computational and Graphical Statistics, 13 (2), 456--466.
See Also
glht
plot.cld
Examples
### multiple comparison procedures### set up a one-way ANOVA data(warpbreaks) amod <- aov(breaks ~ tension, data = warpbreaks)### specify all pair-wise comparisons among levels of variable "tension" tuk <- glht(amod, linfct = mcp(tension ="Tukey"))### extract information tuk.cld <- cld(tuk)### use sufficiently large upper margin old.par <- par(mai=c(1,1,1.25,1), no.readonly =TRUE)### plot plot(tuk.cld) par(old.par)### now using covariates data(warpbreaks) amod2 <- aov(breaks ~ tension + wool, data = warpbreaks)### specify all pair-wise comparisons among levels of variable "tension" tuk2 <- glht(amod2, linfct = mcp(tension ="Tukey"))### extract information tuk.cld2 <- cld(tuk2)### use sufficiently large upper margin old.par <- par(mai=c(1,1,1.25,1), no.readonly =TRUE)### plot using different colors plot(tuk.cld2, col=c("black","red","blue")) par(old.par)### set up all pair-wise comparisons for count data data(Titanic) mod <- glm(Survived ~ Class, data = as.data.frame(Titanic), weights = Freq, family = binomial())### specify all pair-wise comparisons among levels of variable "Class" glht.mod <- glht(mod, mcp(Class ="Tukey"))### extract information mod.cld <- cld(glht.mod)### use sufficiently large upper margin old.par <- par(mai=c(1,1,1.5,1), no.readonly =TRUE)### plot plot(mod.cld) par(old.par)