Ab_drop_fixed function

Drop fixed columns in the Ab-Representation

Drop fixed columns in the Ab-Representation

Often inequalities refer to all probability parameters of a multinomial distribution. This function allows to transform the inequalities into the appropriate format A * x <b with respect to the free parameters only.

Ab_drop_fixed(A, b, options)

Arguments

  • A: a matrix defining the convex polytope via A*x <= b. The columns of A do not include the last choice option per item type and thus the number of columns must be equal to sum(options-1)

    (e.g., the column order of A for k = c(a1,a2,a2, b1,b2)

    is c(a1,a2, b1)).

  • b: a vector of the same length as the number of rows of A.

  • options: number of observable categories/probabilities for each item type/multinomial distribution, e.g., c(3,2) for a ternary and binary item.

Examples

# p1 < p2 < p3 < p4 A4 <- matrix( c( 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1 ), nrow = 3, byrow = TRUE ) b4 <- c(0, 0, 0) # drop the fixed column for: p4 = (1-p1-p2-p3) Ab_drop_fixed(A4, b4, options = c(4))