strategy_multiattribute function

Strategy Predictions for Multiattribute Decisions

Strategy Predictions for Multiattribute Decisions

Returns a list defining the predictions of different choice strategies (e.g., TTB, WADD)

strategy_multiattribute(cueA, cueB, v, strategy, c = 0.5, prior = c(1, 1))

Arguments

  • cueA: cue values of Option A (-1/+1 = negative/positive; 0 = missing). If a matrix is provided, each row defines one item type.
  • cueB: cue values of Option B (see cueA).
  • v: cue validities: probabilities that cues lead to correct decision. Must be of the same length as the number of cues.
  • strategy: strategy label, e.g., "TTB", "WADD", or "WADDprob". Can be a vector. See details.
  • c: defines the upper boundary for the error probabilities
  • prior: defines the prior distribution for the error probabilities (i.e., truncated independent beta distributions dbeta(prior[1], prior[2]) )

Returns

a strategy object (a list) with the entries:

  • pattern:: a numeric vector encoding the predicted choice pattern by the sign (negative = Option A, positive = Option B, 0 = guessing). Identical error probabilities are encoded by using the same absolute number (e.g., c(-1,1,1) defines one error probability with A,B,B predictions).
  • c:: upper boundary of error probabilities
  • ordered:: whether error probabilities are linearly ordered by their absolute value in pattern (largest error: smallest absolute number)
  • prior:: a numeric vector with two positive values specifying the shape parameters of the beta prior distribution (truncated to the interval [0,c]
  • label:: strategy label

Examples

# single item type v <- c(.9, .8, .7, .6) ca <- c(1, -1, -1, 1) cb <- c(-1, 1, -1, -1) strategy_multiattribute(ca, cb, v, "TTB") strategy_multiattribute(ca, cb, v, "WADDprob") # multiple item types data(heck2017_raw) strategy_multiattribute( heck2017_raw[1:10, c("a1", "a2", "a3", "a4")], heck2017_raw[1:10, c("b1", "b2", "b3", "b4")], v, "WADDprob" )