Computes the multivariate Fourier Whittle estimator of the long-run covariance matrix (also called fractal connectivity) for a given value of long-memory parameters d.
mfw_cov_eval(d, x, m)
Arguments
d: vector of long-memory parameters (dimension should match dimension of x)
x: data (matrix with time in rows and variables in columns)
m: truncation number used for the estimation of the periodogram
Details
The choice of m determines the range of frequencies used in the computation of the periodogram, lambdaj=2∗pi∗j/N, j = 1,... , m. The optimal value depends on the spectral properties of the time series such as the presence of short range dependence. In Shimotsu (2007), m is chosen to be equal to N0.65.
Returns
long-run covariance matrix estimation.
References
K. Shimotsu (2007) Gaussian semiparametric estimation of multivariate fractionally integrated processes Journal of Econometrics Vol. 137, N. 2, pages 277-310.
S. Achard, I. Gannaz (2016) Multivariate wavelet Whittle estimation in long-range dependence. Journal of Time Series Analysis, Vol 37, N. 4, pages 476-512. http://arxiv.org/abs/1412.0391.
S. Achard, I Gannaz (2019) Wavelet-Based and Fourier-Based Multivariate Whittle Estimation: multiwave. Journal of Statistical Software, Vol 89, N. 6, pages 1-31.
Author(s)
S. Achard and I. Gannaz
See Also
mfw_eval, mfw
Examples
### Simulation of ARFIMA(0,\code{d},0)rho <-0.4cov <- matrix(c(1,rho,rho,1),2,2)d <- c(0.4,0.2)J <-9N <-2^J
resp <- fivarma(N, d, cov_matrix=cov)x <- resp$x
long_run_cov <- resp$long_run_cov
m <-57## default value of ShimotsuG <- mfw_cov_eval(d,x,m)# estimation of the covariance matrix when d is known