mfw_eval function

evaluation of multivariate Fourier Whittle estimator

evaluation of multivariate Fourier Whittle estimator

Evaluates the multivariate Fourier Whittle criterion at a given long-memory parameter value d.

mfw_eval(d, x, m)

Arguments

  • d: vector of long-memory parameters (dimension should match dimension of x).
  • x: data (matrix with time in rows and variables in columns).
  • m: truncation number used for the estimation of the periodogram.

Details

The choice of m determines the range of frequencies used in the computation of the periodogram, lambdaj=2pij/Nlambda_j = 2*pi*j/N, jj = 1,... , m. The optimal value depends on the spectral properties of the time series such as the presence of short range dependence. In Shimotsu (2007), m is chosen to be equal to N0.65N^0.65.

Returns

multivariate Fourier Whittle estimator computed at point d.

References

K. Shimotsu (2007) Gaussian semiparametric estimation of multivariate fractionally integrated processes Journal of Econometrics Vol. 137, N. 2, pages 277-310.

S. Achard, I. Gannaz (2016) Multivariate wavelet Whittle estimation in long-range dependence. Journal of Time Series Analysis, Vol 37, N. 4, pages 476-512. http://arxiv.org/abs/1412.0391.

S. Achard, I Gannaz (2019) Wavelet-Based and Fourier-Based Multivariate Whittle Estimation: multiwave. Journal of Statistical Software, Vol 89, N. 6, pages 1-31.

Author(s)

S. Achard and I. Gannaz

See Also

mfw_cov_eval, mfw

Examples

### Simulation of ARFIMA(0,d,0) rho <- 0.4 cov <- matrix(c(1,rho,rho,1),2,2) d <- c(0.4,0.2) J <- 9 N <- 2^J resp <- fivarma(N, d, cov_matrix=cov) x <- resp$x long_run_cov <- resp$long_run_cov m <- 57 ## default value of Shimotsu res_mfw <- mfw(x,m) d <- res_mfw$d G <- mfw_eval(d,x,m) k <- length(d) res_d <- optim(rep(0,k),mfw_eval,x=x,m=m,method='Nelder-Mead',lower=-Inf,upper=Inf)$par
  • Maintainer: Sophie Achard
  • License: GPL (>= 2)
  • Last published: 2019-05-06

Useful links