mww function

multivariate wavelet Whittle estimation

multivariate wavelet Whittle estimation

Computes the multivariate wavelet Whittle estimation for the long-memory parameter vector d and the long-run covariance matrix, using DWTexact for the wavelet decomposition.

mww(x, filter, LU = NULL)

Arguments

  • x: data (matrix with time in rows and variables in columns).
  • filter: wavelet filter as obtain with scaling_filter.
  • LU: bivariate vector (optional) containing L, the lowest resolution in wavelet decomposition U, the maximal resolution in wavelet decomposition. (Default values are set to L=1, and U=Jmax.)

Details

L is fixing the lower limit of wavelet scales. L can be increased to avoid finest frequencies that can be corrupted by the presence of high frequency phenomena.

U is fixing the upper limit of wavelet scales. U can be decreased when highest frequencies have to be discarded.

Returns

  • d: estimation of vector of long-memory parameters.

  • cov: estimation of long-run covariance matrix.

References

S. Achard, I. Gannaz (2016) Multivariate wavelet Whittle estimation in long-range dependence. Journal of Time Series Analysis, Vol 37, N. 4, pages 476-512. http://arxiv.org/abs/1412.0391.

S. Achard, I Gannaz (2019) Wavelet-Based and Fourier-Based Multivariate Whittle Estimation: multiwave. Journal of Statistical Software, Vol 89, N. 6, pages 1-31.

Author(s)

S. Achard and I. Gannaz

See Also

mww_eval, mww_cov_eval,mww_wav,mww_wav_eval,mww_wav_cov_eval

Examples

### Simulation of ARFIMA(0,d,0) rho <- 0.4 cov <- matrix(c(1,rho,rho,1),2,2) d <- c(0.4,0.2) J <- 9 N <- 2^J resp <- fivarma(N, d, cov_matrix=cov) x <- resp$x long_run_cov <- resp$long_run_cov ## wavelet coefficients definition res_filter <- scaling_filter('Daubechies',8); filter <- res_filter$h M <- res_filter$M alpha <- res_filter$alpha LU <- c(2,11) res_mww <- mww(x,filter,LU)
  • Maintainer: Sophie Achard
  • License: GPL (>= 2)
  • Last published: 2019-05-06

Useful links