mww_wav_cov_eval function

multivariate wavelet Whittle estimation of the long-run covariance matrix

multivariate wavelet Whittle estimation of the long-run covariance matrix

Computes the multivariate wavelet Whittle estimation of the long-run covariance matrix given the long-memory parameter vector d for the already wavelet decomposed data.

mww_wav_cov_eval(d, xwav, index,psih,grid_K, LU)

Arguments

  • d: vector of long-memory parameters (dimension should match dimension of xwav).
  • xwav: wavelet coefficients matrix (with scales in rows and variables in columns).
  • index: vector containing the largest index of each band, i.e. for j>1j>1 the wavelet coefficients of scale jj are \codedwt(k)\code{dwt}(k) for k[\codeindmaxband(j1)+1,\codeindmaxband(j)]k \in [\code{indmaxband}(j-1)+1,\code{indmaxband}(j)] and for j=1j=1, \codedwt(k)\code{dwt}(k) for k[1,\codeindmaxband(1)]k \in [1,\code{indmaxband}(1)].
  • psih: the Fourier transform of the wavelet mother at values grid_K
  • grid_K: the grid for the approximation of the integral in K
  • LU: bivariate vector (optional) containing L, the lowest resolution in wavelet decomposition U, the maximal resolution in wavelet decomposition.

Details

L is fixing the lower limit of wavelet scales. L can be increased to avoid finest frequencies that can be corrupted by the presence of high frequency phenomena.

U is fixing the upper limit of wavelet scales. U can be decreased when highest frequencies have to be discarded.

Returns

Long-run covariance matrix estimation.

References

S. Achard, I. Gannaz (2016) Multivariate wavelet Whittle estimation in long-range dependence. Journal of Time Series Analysis, Vol 37, N. 4, pages 476-512. http://arxiv.org/abs/1412.0391.

S. Achard, I Gannaz (2019) Wavelet-Based and Fourier-Based Multivariate Whittle Estimation: multiwave. Journal of Statistical Software, Vol 89, N. 6, pages 1-31.

Author(s)

S. Achard and I. Gannaz

See Also

mww, mww_eval,mww_wav,mww_wav_eval,mww_cov_eval

Examples

### Simulation of ARFIMA(0,d,0) rho<-0.4 cov <- matrix(c(1,rho,rho,1),2,2) d<-c(0.4,0.2) J <- 9 N <- 2^J resp <- fivarma(N, d, cov_matrix=cov) x <- resp$x long_run_cov <- resp$long_run_cov ## wavelet coefficients definition res_filter <- scaling_filter('Daubechies',8); filter <- res_filter$h M <- res_filter$M alpha <- res_filter$alpha LU <- c(2,11) ### wavelet decomposition if(is.matrix(x)){ N <- dim(x)[1] k <- dim(x)[2] }else{ N <- length(x) k <- 1 } x <- as.matrix(x,dim=c(N,k)) ## Wavelet decomposition xwav <- matrix(0,N,k) for(j in 1:k){ xx <- x[,j] resw <- DWTexact(xx,filter) xwav_temp <- resw$dwt index <- resw$indmaxband Jmax <- resw$Jmax xwav[1:index[Jmax],j] <- xwav_temp; } ## we free some memory new_xwav <- matrix(0,min(index[Jmax],N),k) if(index[Jmax]<N){ new_xwav[(1:(index[Jmax])),] <- xwav[(1:(index[Jmax])),] } xwav <- new_xwav index <- c(0,index) ##### Compute the wavelet functions res_psi <- psi_hat_exact(filter,10) psih<-res_psi$psih grid<-res_psi$grid res_mww <- mww_wav_cov_eval(d,xwav,index, psih, grid,LU)
  • Maintainer: Sophie Achard
  • License: GPL (>= 2)
  • Last published: 2019-05-06

Useful links