vfracdiff function

simulation of vector fractional differencing process

simulation of vector fractional differencing process

Given a vector process x and a vector of long memory parameters d, this function is producing the corresponding fractional differencing process.

vfracdiff(x, d)

Arguments

  • x: initial process.
  • d: vector of long-memory parameters

Details

Given a process x, this function applied a fractional difference procedure using the formula:

diag((1L)d)x,diag((1L)d)x, diag((1-L)^d) x,diag((1-L)^d) x,

where L is the lag operator.

Returns

vector fractional differencing of x.

References

S. Achard, I. Gannaz (2016) Multivariate wavelet Whittle estimation in long-range dependence. Journal of Time Series Analysis, Vol 37, N. 4, pages 476-512. http://arxiv.org/abs/1412.0391.

K. Shimotsu (2007) Gaussian semiparametric estimation of multivariate fractionally integrated processes Journal of Econometrics Vol. 137, N. 2, pages 277-310.

S. Achard, I Gannaz (2019) Wavelet-Based and Fourier-Based Multivariate Whittle Estimation: multiwave. Journal of Statistical Software, Vol 89, N. 6, pages 1-31.

Author(s)

S. Achard and I. Gannaz

See Also

varma, fivarma

Examples

rho1 <- 0.3 rho2 <- 0.8 cov <- matrix(c(1,rho1,rho2,rho1,1,rho1,rho2,rho1,1),3,3) d <- c(0.2,0.3,0.4) J <- 9 N <- 2^J VMA <- diag(c(0.4,0.1,0)) ### or another example VAR <- array(c(0.8,0,0,0,0.6,0,0,0,0.2,0,0,0,0,0.4,0,0,0,0.5),dim=c(3,3,2)) VAR <- diag(c(0.8,0.6,0)) x <- varma(N, k=3, cov_matrix=cov, VAR=VAR, VMA=VMA) vx<-vfracdiff(x,d)
  • Maintainer: Sophie Achard
  • License: GPL (>= 2)
  • Last published: 2019-05-06

Useful links