simulation of vector fractional differencing process
simulation of vector fractional differencing process
Given a vector process x and a vector of long memory parameters d, this function is producing the corresponding fractional differencing process.
vfracdiff(x, d)
Arguments
x: initial process.
d: vector of long-memory parameters
Details
Given a process x, this function applied a fractional difference procedure using the formula:
diag((1−L)d)x,diag((1−L)d)x,
where L is the lag operator.
Returns
vector fractional differencing of x.
References
S. Achard, I. Gannaz (2016) Multivariate wavelet Whittle estimation in long-range dependence. Journal of Time Series Analysis, Vol 37, N. 4, pages 476-512. http://arxiv.org/abs/1412.0391.
K. Shimotsu (2007) Gaussian semiparametric estimation of multivariate fractionally integrated processes Journal of Econometrics Vol. 137, N. 2, pages 277-310.
S. Achard, I Gannaz (2019) Wavelet-Based and Fourier-Based Multivariate Whittle Estimation: multiwave. Journal of Statistical Software, Vol 89, N. 6, pages 1-31.
Author(s)
S. Achard and I. Gannaz
See Also
varma, fivarma
Examples
rho1 <-0.3rho2 <-0.8cov <- matrix(c(1,rho1,rho2,rho1,1,rho1,rho2,rho1,1),3,3)d <- c(0.2,0.3,0.4)J <-9N <-2^J
VMA <- diag(c(0.4,0.1,0))### or another example VAR <- array(c(0.8,0,0,0,0.6,0,0,0,0.2,0,0,0,0,0.4,0,0,0,0.5),dim=c(3,3,2))VAR <- diag(c(0.8,0.6,0))x <- varma(N, k=3, cov_matrix=cov, VAR=VAR, VMA=VMA)vx<-vfracdiff(x,d)