parafac function

Parallel Factor Analysis-1

Parallel Factor Analysis-1

Fits Richard A. Harshman's Parallel Factors (Parafac) model to 3-way or 4-way data arrays. Parameters are estimated via alternating least squares with optional constraints.

parafac(X, nfac, nstart = 10, const = NULL, control = NULL, Afixed = NULL, Bfixed = NULL, Cfixed = NULL, Dfixed = NULL, Astart = NULL, Bstart = NULL, Cstart = NULL, Dstart = NULL, Astruc = NULL, Bstruc = NULL, Cstruc = NULL, Dstruc = NULL, Amodes = NULL, Bmodes = NULL, Cmodes = NULL, Dmodes = NULL, maxit = 500, ctol = 1e-4, parallel = FALSE, cl = NULL, output = c("best", "all"), verbose = TRUE, backfit = FALSE)

Arguments

  • X: Three-way data array with dim=c(I,J,K) or four-way data array with dim=c(I,J,K,L). Missing data are allowed (see Note).
  • nfac: Number of factors.
  • nstart: Number of random starts.
  • const: Character vector of length 3 or 4 giving the constraints for each mode (defaults to unconstrained). See const for the 24 available options.
  • control: List of parameters controlling options for smoothness constraints. This is passed to const.control, which describes the available options.
  • Afixed: Used to fit model with fixed Mode A weights.
  • Bfixed: Used to fit model with fixed Mode B weights.
  • Cfixed: Used to fit model with fixed Mode C weights.
  • Dfixed: Used to fit model with fixed Mode D weights.
  • Astart: Starting Mode A weights. Default uses random weights.
  • Bstart: Starting Mode B weights. Default uses random weights.
  • Cstart: Starting Mode C weights. Default uses random weights.
  • Dstart: Starting Mode D weights. Default uses random weights.
  • Astruc: Structure constraints for Mode A weights. See Note.
  • Bstruc: Structure constraints for Mode B weights. See Note.
  • Cstruc: Structure constraints for Mode C weights. See Note.
  • Dstruc: Structure constraints for Mode D weights. See Note.
  • Amodes: Mode ranges for Mode A weights (for unimodality constraints). See Note.
  • Bmodes: Mode ranges for Mode B weights (for unimodality constraints). See Note.
  • Cmodes: Mode ranges for Mode C weights (for unimodality constraints). See Note.
  • Dmodes: Mode ranges for Mode D weights (for unimodality constraints). See Note.
  • maxit: Maximum number of iterations.
  • ctol: Convergence tolerance (R^2 change).
  • parallel: Logical indicating if parLapply should be used. See Examples.
  • cl: Cluster created by makeCluster. Only used when parallel=TRUE.
  • output: Output the best solution (default) or output all nstart solutions.
  • verbose: If TRUE, fitting progress is printed via txtProgressBar. Ignored if parallel=TRUE.
  • backfit: Should backfitting algorithm be used for cmls?

Details

Given a 3-way array X = array(x, dim = c(I,J,K)), the 3-way Parafac model can be written as

X[i,j,k] = sum A[i,r]*B[j,r]*C[k,r] + E[i,j,k]

where A = matrix(a,I,R) are the Mode A (first mode) weights, B = matrix(b,J,R) are the Mode B (second mode) weights, C = matrix(c,K,R) are the Mode C (third mode) weights, and E = array(e,dim=c(I,J,K)) is the 3-way residual array. The summation is for r = seq(1,R).

Given a 4-way array X = array(x, dim = c(I,J,K,L)), the 4-way Parafac model can be written as

X[i,j,k,l] = sum A[i,r]*B[j,r]*C[k,r]*D[l,r] + E[i,j,k,l]

where D = matrix(d,L,R) are the Mode D (fourth mode) weights, E = array(e,dim=c(I,J,K,L)) is the 4-way residual array, and the other terms can be interprered as previously described.

Weight matrices are estimated using an alternating least squares algorithm with optional constraints.

Returns

If output = "best", returns an object of class "parafac" with the following elements: - A: Mode A weight matrix.

  • B: Mode B weight matrix.

  • C: Mode C weight matrix.

  • D: Mode D weight matrix.

  • SSE: Sum of Squared Errors.

  • Rsq: R-squared value.

  • GCV: Generalized Cross-Validation.

  • edf: Effective degrees of freedom.

  • iter: Number of iterations.

  • cflag: Convergence flag. See Note.

  • const: See argument const.

  • control: See argument control.

  • fixed: Logical vector indicating whether 'fixed' weights were used for each mode.

  • struc: Logical vector indicating whether 'struc' constraints were used for each mode.

Otherwise returns a list of length nstart where each element is an object of class "parafac".

References

Harshman, R. A. (1970). Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multimodal factor analysis. UCLA Working Papers in Phonetics, 16, 1-84.

Harshman, R. A., & Lundy, M. E. (1994). PARAFAC: Parallel factor analysis. Computational Statistics and Data Analysis, 18, 39-72. tools:::Rd_expr_doi("10.1016/0167-9473(94)90132-5")

Helwig, N. E. (2017). Estimating latent trends in multivariate longitudinal data via Parafac2 with functional and structural constraints. Biometrical Journal, 59(4), 783-803. tools:::Rd_expr_doi("10.1002/bimj.201600045")

Hitchcock, F. L. (1927). The expression of a tensor or a polyadic as a sum of products. Journal of Mathematics and Physics, 6, 164-189. tools:::Rd_expr_doi("10.1002/sapm192761164")

Author(s)

Nathaniel E. Helwig helwig@umn.edu

Note

Missing data should be specified as NA values in the input X. The missing data are randomly initialized and then iteratively imputed as a part of the algorithm.

Structure constraints should be specified with a matrix of logicals (TRUE/FALSE), such that FALSE elements indicate a weight should be constrained to be zero. Default uses unstructured weights, i.e., a matrix of all TRUE values.

When using unimodal constraints, the *modes inputs can be used to specify the mode search range for each factor. These inputs should be matrices with dimension c(2,nfac) where the first row gives the minimum mode value and the second row gives the maximum mode value (with respect to the indicies of the corresponding weight matrix).

Output cflag gives convergence information: cflag = 0 if algorithm converged normally, cflag = 1 if maximum iteration limit was reached before convergence, and cflag = 2 if algorithm terminated abnormally due to a problem with the constraints.

Warnings

The algorithm can perform poorly if the number of factors nfac is set too large.

See Also

The cpd function implements an N-way extension without constraints.

The fitted.parafac function creates the model-implied fitted values from a fit "parafac" object.

The resign.parafac function can be used to resign factors from a fit "parafac" object.

The rescale.parafac function can be used to rescale factors from a fit "parafac" object.

The reorder.parafac function can be used to reorder factors from a fit "parafac" object.

The cmls function (from CMLS package) is called as a part of the alternating least squares algorithm.

Examples

########## 3-way example ########## # create random data array with Parafac structure set.seed(3) mydim <- c(50, 20, 5) nf <- 3 Amat <- matrix(rnorm(mydim[1]*nf), nrow = mydim[1], ncol = nf) Bmat <- matrix(runif(mydim[2]*nf), nrow = mydim[2], ncol = nf) Cmat <- matrix(runif(mydim[3]*nf), nrow = mydim[3], ncol = nf) Xmat <- tcrossprod(Amat, krprod(Cmat, Bmat)) Xmat <- array(Xmat, dim = mydim) Emat <- array(rnorm(prod(mydim)), dim = mydim) Emat <- nscale(Emat, 0, ssnew = sumsq(Xmat)) # SNR = 1 X <- Xmat + Emat # fit Parafac model (unconstrained) pfac <- parafac(X, nfac = nf, nstart = 1) pfac # fit Parafac model (non-negativity on Modes B and C) pfacNN <- parafac(X, nfac = nf, nstart = 1, const = c("uncons", "nonneg", "nonneg")) pfacNN # check solution Xhat <- fitted(pfac) sum((Xmat - Xhat)^2) / prod(mydim) # reorder and resign factors pfac$B[1:4,] pfac <- reorder(pfac, c(3,1,2)) pfac$B[1:4,] pfac <- resign(pfac, mode="B") pfac$B[1:4,] Xhat <- fitted(pfac) sum((Xmat - Xhat)^2) / prod(mydim) # rescale factors colSums(pfac$B^2) colSums(pfac$C^2) pfac <- rescale(pfac, mode = "C", absorb = "B") colSums(pfac$B^2) colSums(pfac$C^2) Xhat <- fitted(pfac) sum((Xmat - Xhat)^2) / prod(mydim) ########## 4-way example ########## # create random data array with Parafac structure set.seed(4) mydim <- c(30,10,8,10) nf <- 4 aseq <- seq(-3, 3, length.out = mydim[1]) Amat <- cbind(dnorm(aseq), dchisq(aseq+3.1, df=3), dt(aseq-2, df=4), dgamma(aseq+3.1, shape=3, rate=1)) Bmat <- svd(matrix(runif(mydim[2]*nf), nrow = mydim[2], ncol = nf), nv = 0)$u Cmat <- matrix(runif(mydim[3]*nf), nrow = mydim[3], ncol = nf) Cstruc <- Cmat > 0.5 Cmat <- Cmat * Cstruc Dmat <- matrix(runif(mydim[4]*nf), nrow = mydim[4], ncol = nf) Xmat <- tcrossprod(Amat, krprod(Dmat, krprod(Cmat, Bmat))) Xmat <- array(Xmat, dim = mydim) Emat <- array(rnorm(prod(mydim)), dim = mydim) Emat <- nscale(Emat, 0, ssnew = sumsq(Xmat)) # SNR = 1 X <- Xmat + Emat # fit Parafac model (unimodal and smooth A, orthogonal B, # non-negative and structured C, non-negative D) pfac <- parafac(X, nfac = nf, nstart = 1, Cstruc = Cstruc, const = c("unismo", "orthog", "nonneg", "nonneg")) pfac # check solution Xhat <- fitted(pfac) sum((Xmat - Xhat)^2) / prod(mydim) congru(Amat, pfac$A) crossprod(pfac$B) pfac$C Cstruc ## Not run: ########## parallel computation ########## # create random data array with Parafac structure set.seed(3) mydim <- c(50,20,5) nf <- 3 Amat <- matrix(rnorm(mydim[1]*nf), nrow = mydim[1], ncol = nf) Bmat <- matrix(runif(mydim[2]*nf), nrow = mydim[2], ncol = nf) Cmat <- matrix(runif(mydim[3]*nf), nrow = mydim[3], ncol = nf) Xmat <- tcrossprod(Amat, krprod(Cmat, Bmat)) Xmat <- array(Xmat, dim = mydim) Emat <- array(rnorm(prod(mydim)), dim = mydim) Emat <- nscale(Emat, 0, ssnew = sumsq(Xmat)) # SNR = 1 X <- Xmat + Emat # fit Parafac model (10 random starts -- sequential computation) set.seed(1) system.time({pfac <- parafac(X, nfac = nf)}) pfac # fit Parafac model (10 random starts -- parallel computation) cl <- makeCluster(detectCores()) ce <- clusterEvalQ(cl, library(multiway)) clusterSetRNGStream(cl, 1) system.time({pfac <- parafac(X, nfac = nf, parallel = TRUE, cl = cl)}) pfac stopCluster(cl) ## End(Not run)
  • Maintainer: Nathaniel E. Helwig
  • License: GPL (>= 2)
  • Last published: 2025-04-15

Useful links