Contour plot of the probability density of a multivariate distribution with 2 variables:
generalized Gaussian distribution (MGGD) with mean vector mu, dispersion matrix Sigma and shape parameter beta
Cauchy distribution (MCD) with location parameter mu and scatter matrix Sigma
t distribution (MTD) with location parameter mu, scatter matrix Sigma and degrees of freedom nu
This function uses the contour function.
contourmvd(mu, Sigma, beta =NULL, nu =NULL, distribution = c("mggd","mcd","mtd"), xlim = c(mu[1]+ c(-10,10)*Sigma[1,1]), ylim = c(mu[2]+ c(-10,10)*Sigma[2,2]), zlim =NULL, npt =30, nx = npt, ny = npt, main =NULL, sub =NULL, nlevels =10, levels = pretty(zlim, nlevels), tol =1e-6,...)
Arguments
mu: length 2 numeric vector.
Sigma: symmetric, positive-definite square matrix of order 2. The dispersion matrix.
beta: numeric. If distribution = "mggd", the shape parameter of the MGGD. NULL if dist is "mcd" or "mtd".
nu: numeric. If distribution = "mtd", the degrees of freedom of the MTD. NULL if distribution is "mggd" or "mcd".
distribution: character string. The probability distribution. It can be "mggd" (multivariate generalized Gaussian distribution) "mcd" (multivariate Cauchy) or "mtd" (multivariate t).
xlim, ylim: x-and y- limits.
zlim: z- limits. If NULL, it is the range of the values of the density on the x and y values within xlim and ylim.
npt: number of points for the discretisation.
nx, ny: number of points for the discretisation among the x- and y- axes.
main, sub: main and sub title, as for title. If omitted, the main title is set to "Multivariate generalised Gaussian density", "Multivariate Cauchy density" or "Multivariate t density".
nlevels, levels: arguments to be passed to the contour function.
tol: tolerance (relative to largest variance) for numerical lack of positive-definiteness in Sigma, for the estimation of the density. See dmggd, dmcd or dmtd.
...: additional arguments to plot.window, title, Axis and box, typically graphical parameters such as cex.axis.
Returns
Returns invisibly the probability density function.
Examples
mu <- c(1,4)Sigma <- matrix(c(0.8,0.2,0.2,0.2), nrow =2)# Bivariate generalized Gaussian distributionbeta <-0.74contourmvd(mu, Sigma, beta = beta, distribution ="mggd")# Bivariate Cauchy distributioncontourmvd(mu, Sigma, distribution ="mcd")# Bivariate t distributionnu <-1contourmvd(mu, Sigma, nu = nu, distribution ="mtd")
References
E. Gomez, M. Gomez-Villegas, H. Marin. A Multivariate Generalization of the Power Exponential Family of Distribution. Commun. Statist. 1998, Theory Methods, col. 27, no. 23, p 589-600. tools:::Rd_expr_doi("10.1080/03610929808832115")
S. Kotz and Saralees Nadarajah (2004), Multivariate t Distributions and Their Applications, Cambridge University Press.
See Also
plotmvd: plot of a bivariate generalised Gaussian, Cauchy or t density.
dmggd: probability density of a multivariate generalised Gaussian distribution.
dmcd: probability density of a multivariate Cauchy distribution.
dmtd: probability density of a multivariate t distribution.