dmcd function

Density of a Multivariate Cauchy Distribution

Density of a Multivariate Cauchy Distribution

Density of the multivariate (pp variables) Cauchy distribution (MCD) with location parameter mu and scatter matrix Sigma.

dmcd(x, mu, Sigma, tol = 1e-6)

Arguments

  • x: length pp numeric vector.
  • mu: length pp numeric vector. The location parameter.
  • Sigma: symmetric, positive-definite square matrix of order pp. The scatter matrix.
  • tol: tolerance (relative to largest eigenvalue) for numerical lack of positive-definiteness in Sigma.

Returns

The value of the density.

Details

The density function of a multivariate Cauchy distribution is given by:

f(xμ,Σ)=Γ(1+p2)πp/2Γ(12)Σ12[1+(xμ)TΣ1(xμ)]1+p2 \displaystyle{ f(\mathbf{x}|\boldsymbol{\mu}, \Sigma) = \frac{\Gamma\left(\frac{1+p}{2}\right)}{\pi^{p/2} \Gamma\left(\frac{1}{2}\right) |\Sigma|^\frac{1}{2} \left[ 1 + (\mathbf{x}-\boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x}-\boldsymbol{\mu}) \right]^\frac{1+p}{2}} }

Examples

mu <- c(0, 1, 4) sigma <- matrix(c(1, 0.6, 0.2, 0.6, 1, 0.3, 0.2, 0.3, 1), nrow = 3) dmcd(c(0, 1, 4), mu, sigma) dmcd(c(1, 2, 3), mu, sigma)

See Also

rmcd: random generation from a MCD.

estparmcd: estimation of the parameters of a MCD.

plotmvd, contourmvd: plot of the probability density of a bivariate distribution.

Author(s)

Pierre Santagostini, Nizar Bouhlel

  • Maintainer: Pierre Santagostini
  • License: GPL (>= 3)
  • Last published: 2024-12-20