dmtd function

Density of a Multivariate tt Distribution

Density of a Multivariate tt Distribution

Density of the multivariate (pp variables) tt distribution (MTD) with degrees of freedom nu, mean vector mu and correlation matrix Sigma.

dmtd(x, nu, mu, Sigma, tol = 1e-6)

Arguments

  • x: length pp numeric vector.
  • nu: numeric. The degrees of freedom.
  • mu: length pp numeric vector. The mean vector.
  • Sigma: symmetric, positive-definite square matrix of order pp. The correlation matrix.
  • tol: tolerance (relative to largest variance) for numerical lack of positive-definiteness in Sigma.

Returns

The value of the density.

Details

The density function of a multivariate tt distribution with pp variables is given by:

f(xν,μ,Σ)=Γ(ν+p2)Σ1/2Γ(ν2)(νπ)p/2(1+1ν(xμ)TΣ1(xμ))ν+p2 \displaystyle{ f(\mathbf{x}|\nu, \boldsymbol{\mu}, \Sigma) = \frac{\Gamma\left( \frac{\nu+p}{2} \right) |\Sigma|^{-1/2}}{\Gamma\left( \frac{\nu}{2} \right) (\nu \pi)^{p/2}} \left( 1 + \frac{1}{\nu} (\mathbf{x}-\boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x}-\boldsymbol{\mu}) \right)^{-\frac{\nu+p}{2}} }

When p=1p=1 (univariate case) it is the location-scale tt distribution, with density function:

f(xν,μ,σ2)=Γ(ν+12)Γ(ν2)νπσ2(1+(xμ)2νσ2)ν+12 \displaystyle{ f(x|\nu, \mu, \sigma^2) = \frac{\Gamma\left( \frac{\nu+1}{2} \right)}{\Gamma\left( \frac{\nu}{2} \right) \sqrt{\nu \pi \sigma^2}} \left(1 + \frac{(x-\mu)^2}{\nu \sigma^2}\right)^{-\frac{\nu+1}{2}} }

Examples

nu <- 1 mu <- c(0, 1, 4) Sigma <- matrix(c(0.8, 0.3, 0.2, 0.3, 0.2, 0.1, 0.2, 0.1, 0.2), nrow = 3) dmtd(c(0, 1, 4), nu, mu, Sigma) dmtd(c(1, 2, 3), nu, mu, Sigma) # Univariate dmtd(1, 3, 0, 1) dt(1, 3)

References

S. Kotz and Saralees Nadarajah (2004), Multivariate tt Distributions and Their Applications, Cambridge University Press.

See Also

rmtd: random generation from a MTD.

estparmtd: estimation of the parameters of a MTD.

plotmvd, contourmvd: plot of the probability density of a bivariate distribution.

Author(s)

Pierre Santagostini, Nizar Bouhlel

  • Maintainer: Pierre Santagostini
  • License: GPL (>= 3)
  • Last published: 2024-12-20