Density of a Multivariate Distribution
Density of the multivariate ( variables) distribution (MTD) with degrees of freedom nu
, mean vector mu
and correlation matrix Sigma
.
dmtd(x, nu, mu, Sigma, tol = 1e-6)
x
: length numeric vector.nu
: numeric. The degrees of freedom.mu
: length numeric vector. The mean vector.Sigma
: symmetric, positive-definite square matrix of order . The correlation matrix.tol
: tolerance (relative to largest variance) for numerical lack of positive-definiteness in Sigma.The value of the density.
The density function of a multivariate distribution with variables is given by:
When (univariate case) it is the location-scale distribution, with density function:
nu <- 1 mu <- c(0, 1, 4) Sigma <- matrix(c(0.8, 0.3, 0.2, 0.3, 0.2, 0.1, 0.2, 0.1, 0.2), nrow = 3) dmtd(c(0, 1, 4), nu, mu, Sigma) dmtd(c(1, 2, 3), nu, mu, Sigma) # Univariate dmtd(1, 3, 0, 1) dt(1, 3)
S. Kotz and Saralees Nadarajah (2004), Multivariate Distributions and Their Applications, Cambridge University Press.
rmtd
: random generation from a MTD.
estparmtd
: estimation of the parameters of a MTD.
plotmvd
, contourmvd
: plot of the probability density of a bivariate distribution.
Pierre Santagostini, Nizar Bouhlel
Useful links