eps: numeric. Precision for the estimation of the beta parameter.
display: logical. When TRUE the value of the beta parameter at each iteration is printed.
plot: logical. When TRUE the successive values of the beta parameter are plotted, allowing to visualise its convergence.
Returns
A list of 3 elements:
mu the mean vector.
Sigma: symmetric positive-definite matrix. The dispersion matrix.
beta non-negative numeric value. The shape parameter.
with two attributes attr(, "epsilon") (precision of the result) and attr(, "k") (number of iterations).
Details
The μ parameter is the mean vector of x.
The dispersion matrix Σ and shape parameter β are computed using the method presented in Pascal et al., using an iterative algorithm.
The precision for the estimation of beta is given by the eps parameter.
Examples
mu <- c(0,1,4)Sigma <- matrix(c(0.8,0.3,0.2,0.3,0.2,0.1,0.2,0.1,0.2), nrow =3)beta <-0.74x <- rmggd(100, mu, Sigma, beta)# Estimation of the parametersestparmggd(x)
References
F. Pascal, L. Bombrun, J.Y. Tourneret, Y. Berthoumieu. Parameter Estimation For Multivariate Generalized Gaussian Distribution. IEEE Trans. Signal Processing, vol. 61 no. 23, p. 5960-5971, Dec. 2013. tools:::Rd_expr_doi("DOI:10.1109/TSP.2013.2282909")