kldcauchy function

Kullback-Leibler Divergence between Centered Multivariate Cauchy Distributions

Kullback-Leibler Divergence between Centered Multivariate Cauchy Distributions

Computes the Kullback-Leibler divergence between two random vectors distributed according to multivariate Cauchy distributions (MCD) with zero location vector.

kldcauchy(Sigma1, Sigma2, eps = 1e-06)

Arguments

  • Sigma1: symmetric, positive-definite matrix. The scatter matrix of the first distribution.
  • Sigma2: symmetric, positive-definite matrix. The scatter matrix of the second distribution.
  • eps: numeric. Precision for the computation of the partial derivative of the Lauricella DD-hypergeometric function (see Details). Default: 1e-06.

Returns

A numeric value: the Kullback-Leibler divergence between the two distributions, with two attributes attr(, "epsilon") (precision of the partial derivative of the Lauricella DD-hypergeometric function,see Details) and attr(, "k") (number of iterations).

Details

Given X1X_1, a random vector of Rp\mathbb{R}^p distributed according to the MCD with parameters (0,Σ1)(0, \Sigma_1)

and X2X_2, a random vector of Rp\mathbb{R}^p distributed according to the MCD with parameters (0,Σ2)(0, \Sigma_2).

Let λ1,,λp\lambda_1, \dots, \lambda_p the eigenvalues of the square matrix Σ1Σ21\Sigma_1 \Sigma_2^{-1}

sorted in increasing order:

λ1<<λp1<λp \lambda_1 < \dots < \lambda_{p-1} < \lambda_p

Depending on the values of these eigenvalues, the computation of the Kullback-Leibler divergence of X1X_1 from X2X_2

is given by:

KL(X1X2)=12lni=1pλi+1+p2D \displaystyle{ KL(X_1||X_2) = -\frac{1}{2} \ln{ \prod_{i=1}^p{\lambda_i}} + \frac{1+p}{2} D }

where DD is given by:

  • if λ1\<1\lambda_1 \< 1 and λp1\lambda_p \> 1:
D=lnλpa{FD(p)(a,12,,12,a+12p;a+1+p2;1λ1λp,,1λp1λp,11λp)}a=0 \displaystyle{ D = \ln{\lambda_p} - \frac{\partial}{\partial a} \bigg\{ F_D^{(p)} \bigg( a, \underbrace{\frac{1}{2}, \dots, \frac{1}{2}, a + \frac{1}{2}}_p ; a + \frac{1+p}{2} ; 1 - \frac{\lambda_1}{\lambda_p}, \dots, 1 - \frac{\lambda_{p-1}}{\lambda_p}, 1 - \frac{1}{\lambda_p} \bigg) \bigg\}\bigg|_{a=0} }
  • if λp\<1\lambda_p \< 1:
D=a{FD(p)(a,12,,12p;a+1+p2;1λ1,,1λp)}a=0 \displaystyle{ D = \frac{\partial}{\partial a} \bigg\{ F_D^{(p)} \bigg( a, \underbrace{\frac{1}{2}, \dots, \frac{1}{2}}_p ; a + \frac{1+p}{2} ; 1 - \lambda_1, \dots, 1 - \lambda_p \bigg) \bigg\}\bigg|_{a=0} }
  • if λ11\lambda_1 \> 1:
D=i=1p1λi×a{FD(p)(1+p2,12,,12p;a+1+p2;11λ1,,11λp)}a=0 \displaystyle{ D = \prod_{i=1}^p\frac{1}{\sqrt{\lambda_i}} \times \frac{\partial}{\partial a} \bigg\{ F_D^{(p)} \bigg( \frac{1+p}{2}, \underbrace{\frac{1}{2}, \dots, \frac{1}{2}}_p ; a + \frac{1+p}{2} ; 1 - \frac{1}{\lambda_1}, \dots, 1 - \frac{1}{\lambda_p} \bigg) \bigg\}\bigg|_{a=0} }

FD(p)F_D^{(p)} is the Lauricella DD-hypergeometric function defined for pp variables:

FD(p)(a;b1,...,bp;g;x1,...,xp)=m10...mp0(a)m1+...+mp(b1)m1...(bp)mp(g)m1+...+mpx1m1m1!...xpmpmp! \displaystyle{ F_D^{(p)}\left(a; b_1, ..., b_p; g; x_1, ..., x_p\right) = \sum\limits_{m_1 \geq 0} ... \sum\limits_{m_p \geq 0}{ \frac{ (a)_{m_1+...+m_p}(b_1)_{m_1} ... (b_p)_{m_p} }{ (g)_{m_1+...+m_p} } \frac{x_1^{m_1}}{m_1!} ... \frac{x_p^{m_p}}{m_p!} } }

Examples

Sigma1 <- matrix(c(1, 0.6, 0.2, 0.6, 1, 0.3, 0.2, 0.3, 1), nrow = 3) Sigma2 <- matrix(c(1, 0.3, 0.1, 0.3, 1, 0.4, 0.1, 0.4, 1), nrow = 3) kldcauchy(Sigma1, Sigma2) kldcauchy(Sigma2, Sigma1) Sigma1 <- matrix(c(0.5, 0, 0, 0, 0.4, 0, 0, 0, 0.3), nrow = 3) Sigma2 <- diag(1, 3) # Case when all eigenvalues of Sigma1 %*% solve(Sigma2) are < 1 kldcauchy(Sigma1, Sigma2) # Case when all eigenvalues of Sigma1 %*% solve(Sigma2) are > 1 kldcauchy(Sigma2, Sigma1)

References

N. Bouhlel, D. Rousseau, A Generic Formula and Some Special Cases for the Kullback–Leibler Divergence between Central Multivariate Cauchy Distributions. Entropy, 24, 838, July 2022. tools:::Rd_expr_doi("10.3390/e24060838")

Author(s)

Pierre Santagostini, Nizar Bouhlel

  • Maintainer: Pierre Santagostini
  • License: GPL (>= 3)
  • Last published: 2024-12-20