lnpochhammer function

Logarithm of the Pochhammer Symbol

Logarithm of the Pochhammer Symbol

Computes the logarithm of the Pochhammer symbol.

lnpochhammer(x, n)

Arguments

  • x: numeric.
  • n: positive integer.

Returns

Numeric value. The logarithm of the Pochhammer symbol.

Details

The Pochhammer symbol is given by:

(x)n=Γ(x+n)Γ(x)=x(x+1)...(x+n1) \displaystyle{ (x)_n = \frac{\Gamma(x+n)}{\Gamma(x)} = x (x+1) ... (x+n-1) }

So, if n>0n > 0:

log((x)n)=log(x)+log(x+1)+...+log(x+n1) \displaystyle{ log\left((x)_n\right) = log(x) + log(x+1) + ... + log(x+n-1) }

If n=0n = 0, log((x)n)=log(1)=0\displaystyle{ log\left((x)_n\right) = log(1) = 0}

Examples

lnpochhammer(2, 0) lnpochhammer(2, 1) lnpochhammer(2, 3)

See Also

pochhammer, lauricella

Author(s)

Pierre Santagostini, Nizar Bouhlel

  • Maintainer: Pierre Santagostini
  • License: GPL (>= 3)
  • Last published: 2024-12-20