rmcd function

Simulate from a Multivariate Cauchy Distribution

Simulate from a Multivariate Cauchy Distribution

Produces one or more samples from the multivariate (pp variables) Cauchy distribution (MCD) with location parameter mu and scatter matrix Sigma.

rmcd(n, mu, Sigma, tol = 1e-6)

Arguments

  • n: integer. Number of observations.
  • mu: length pp numeric vector. The location parameter.
  • Sigma: symmetric, positive-definite square matrix of order pp. The scatter matrix.
  • tol: tolerance for numerical lack of positive-definiteness in Sigma (for mvrnorm, see Details).

Returns

A matrix with pp columns and nn rows.

Details

A sample from a MCD with parameters μ\boldsymbol{\mu} and Σ\Sigma

can be generated using:

X=μ+Yu \displaystyle{\mathbf{X} = \boldsymbol{\mu} + \frac{\mathbf{Y}}{\sqrt{u}}}

where Y\mathbf{Y} is a random vector distributed among a centered Gaussian density with covariance matrix Σ\Sigma (generated using mvrnorm) and uu is distributed among a Chi-squared distribution with 1 degree of freedom.

Examples

mu <- c(0, 1, 4) sigma <- matrix(c(1, 0.6, 0.2, 0.6, 1, 0.3, 0.2, 0.3, 1), nrow = 3) x <- rmcd(100, mu, sigma) x apply(x, 2, median)

References

S. Kotz and Saralees Nadarajah (2004), Multivariate tt Distributions and Their Applications, Cambridge University Press.

See Also

dmcd: probability density of a MCD.

estparmcd: estimation of the parameters of a MCD.

Author(s)

Pierre Santagostini, Nizar Bouhlel

  • Maintainer: Pierre Santagostini
  • License: GPL (>= 3)
  • Last published: 2024-12-20