rmggd function

Simulate from a Multivariate Generalized Gaussian Distribution

Simulate from a Multivariate Generalized Gaussian Distribution

Produces one or more samples from a multivariate (pp variables) generalized Gaussian distribution (MGGD).

rmggd(n = 1 , mu, Sigma, beta, tol = 1e-6)

Arguments

  • n: integer. Number of observations.
  • mu: length pp numeric vector. The mean vector.
  • Sigma: symmetric, positive-definite square matrix of order pp. The dispersion matrix.
  • beta: positive real number. The shape of the distribution.
  • tol: tolerance (relative to largest variance) for numerical lack of positive-definiteness in Sigma.

Returns

A matrix with pp columns and n rows.

Details

A sample from a centered MGGD with dispersion matrix Σ\Sigma

and shape parameter β\beta can be generated using:

X=τ Σ1/2 U \displaystyle{X = \tau \ \Sigma^{1/2} \ U}

where UU is a random vector uniformly distributed on the unit sphere and τ\tau is such that τ2β\tau^{2\beta} is generated from a distribution Gamma with shape parameter p2β\displaystyle{\frac{p}{2\beta}} and scale parameter 22.

Examples

mu <- c(0, 0, 0) Sigma <- matrix(c(0.8, 0.3, 0.2, 0.3, 0.2, 0.1, 0.2, 0.1, 0.2), nrow = 3) beta <- 0.74 rmggd(100, mu, Sigma, beta)

References

E. Gomez, M. Gomez-Villegas, H. Marin. A Multivariate Generalization of the Power Exponential Family of Distribution. Commun. Statist. 1998, Theory Methods, col. 27, no. 23, p 589-600. tools:::Rd_expr_doi("10.1080/03610929808832115")

See Also

dmggd: probability density of a MGGD..

estparmggd: estimation of the parameters of a MGGD.

Author(s)

Pierre Santagostini, Nizar Bouhlel

  • Maintainer: Pierre Santagostini
  • License: GPL (>= 3)
  • Last published: 2024-12-20