Simulate from a Multivariate Generalized Gaussian Distribution
Simulate from a Multivariate Generalized Gaussian Distribution
Produces one or more samples from a multivariate (p variables) generalized Gaussian distribution (MGGD).
rmggd(n =1, mu, Sigma, beta, tol =1e-6)
Arguments
n: integer. Number of observations.
mu: length p numeric vector. The mean vector.
Sigma: symmetric, positive-definite square matrix of order p. The dispersion matrix.
beta: positive real number. The shape of the distribution.
tol: tolerance (relative to largest variance) for numerical lack of positive-definiteness in Sigma.
Returns
A matrix with p columns and n rows.
Details
A sample from a centered MGGD with dispersion matrix Σ
and shape parameter β can be generated using:
X=τΣ1/2U
where U is a random vector uniformly distributed on the unit sphere and τ is such that τ2β is generated from a distribution Gamma with shape parameter 2βp and scale parameter 2.
E. Gomez, M. Gomez-Villegas, H. Marin. A Multivariate Generalization of the Power Exponential Family of Distribution. Commun. Statist. 1998, Theory Methods, col. 27, no. 23, p 589-600. tools:::Rd_expr_doi("10.1080/03610929808832115")
See Also
dmggd: probability density of a MGGD..
estparmggd: estimation of the parameters of a MGGD.