AutocorrIP function

Wavelet Autocorrelation Inner Product Functions

Wavelet Autocorrelation Inner Product Functions

Inner product of cross-level wavelet autocorrelation functions. methods

AutoCorrIP(J, filter.number = 1, family = "DaubExPhase", crop = TRUE)

Arguments

  • J: Number of levels.

  • filter.number: Number of vanishing moments of the wavelet function.

  • family: Wavelet family, either "DaubExPhase"

    or "DaubLeAsymm". The Haar wavelet is defined as default.

  • crop: Logical, should the output of AutoCorrIP be cropped such that the first dimension of the returned array relate to the offset range -2J2^J:2J2^J.This is set at TRUE

    by default.

Details

Let ψ(x)\psi(x) denote the mother wavelet and the wavelet defined for level j as ψj,k(x)=2j/2ψ(2jxk)\psi_{j,k}(x) = 2^{j/2}\psi(2^{j}x-k). The wavelet autocorrelation function between levels j & l is therefore:

Ψj,l(τ)=τψj,k(0)ψl,kτ(0) \Psi_{j,l}(\tau) = \sum_\tau \psi_{j,k}(0)\psi_{l,k-\tau}(0)

Here, integer τ\tau defines the offset of the latter wavelet function relative to the first.

The inner product of this wavelet autocorrelation function is defined as follows for level indices j, l & h and offset λ\lambda:

Aj,l,hλ=τΨj,l(λτ)Ψh,h(τ) A^{\lambda}_{j,l,h} = \sum_{\tau} \Psi_{j,l}(\lambda - \tau) \Psi_{h,h}(\tau)

Returns

A 4D array (invisibly returned) of order LxJxJxJ where L depends on the specified wavelet function. If crop=TRUE then L=2J+12^{J+1}+1. The first dimension defines the offset λ\lambda, whilst the second to fourth dimensions identify the levels indexed by j, l & h respectively.

References

Taylor, S.A.C., Park, T.A. and Eckley, I. (2019) Multivariate locally stationary wavelet analysis with the mvLSW R package. Journal of statistical software 90 (11) pp. 1--16, doi: 10.18637/jss.v090.i11.

Fryzlewicz, P. and Nason, G. (2006) HaarFisz estimation of evolutionary wavelet spectra. Journal of the Royal Statistical Society. Series B, 68 (4) pp. 611-634.

See Also

ipndacw.

Examples

## Plot Haar autocorrelation wavelet functions inner product AInnProd <- AutoCorrIP(J = 8, filter.number = 1, family = "DaubExPhase") ## Not run: MaxOffset <- 2^8 for(h in 6:8){ x11() par(mfrow = c(3, 3)) for(l in 6:8){ for(j in 6:8){ plot(-MaxOffset:MaxOffset, AInnProd[, j, l, h], type = "l", xlab = "lambda", ylab = "Autocorr Inner Prod", main = paste("j :", j, "- l :", l, "- h :", h)) } } } ## End(Not run) ## Special case relating to ipndacw function from wavethresh package Amat <- matrix(NA, ncol = 8, nrow = 8) for(j in 1:8) Amat[, j] <- AInnProd[2^8 + 1, j, j, ] round(Amat, 5) round(ipndacw(J = -8, filter.number = 1, family = "DaubExPhase"), 5)
  • Maintainer: Daniel Grose
  • License: GPL (>= 3)
  • Last published: 2022-06-14

Useful links