mvgam1.1.3 package

Multivariate (Dynamic) Generalized Additive Models

add_residuals.mvgam

Calculate randomized quantile residuals for mvgam objects

code

Stan code and data objects for mvgam models

conditional_effects.mvgam

Display Conditional Effects of Predictors

dynamic

Defining dynamic coefficients in mvgam formulae

ensemble.mvgam_forecast

Combine mvgam forecasts into evenly weighted ensembles

evaluate_mvgams

Evaluate forecasts from fitted mvgam objects

fitted.mvgam

Expected Values of the Posterior Predictive Distribution

forecast.mvgam

Extract or compute hindcasts and forecasts for a fitted mvgam object

formula.mvgam

Extract formulae from mvgam objects

get_mvgam_priors

Extract information on default prior distributions for an mvgam model

GP

Specify dynamic Gaussian processes

gratia_mvgam_enhancements

Enhance mvgam post-processing using gratia functionality

hindcast.mvgam

Extract hindcasts for a fitted mvgam object

index-mvgam

Index mvgam objects

irf.mvgam

Calculate latent VAR impulse response functions

lfo_cv.mvgam

Approximate leave-future-out cross-validation of fitted mvgam object...

logLik.mvgam

Compute pointwise Log-Likelihoods from fitted mvgam objects

loo.mvgam

LOO information criteria for mvgam models

lv_correlations

Calculate trend correlations based on mvgam latent factor loadings

mcmc_plot.mvgam

MCMC plots as implemented in bayesplot

model.frame.mvgam

Extract model.frame from a fitted mvgam object

monotonic

Monotonic splines in mvgam

mvgam_diagnostics

Extract diagnostic quantities of mvgam models

mvgam_draws

Extract posterior draws from fitted mvgam objects

mvgam_families

Supported mvgam families

mvgam_forecast-class

mvgam_forecast object description

mvgam_formulae

Details of formula specifications in mvgam

mvgam_irf-class

mvgam_irf object description

mvgam_marginaleffects

Helper functions for mvgam marginaleffects calculations

mvgam_trends

Supported mvgam trend models

mvgam-class

Fitted mvgam object description

mvgam

Fit a Bayesian dynamic GAM to a univariate or multivariate set of time...

pairs.mvgam

Create a matrix of output plots from a mvgam object

piecewise_trends

Specify piecewise linear or logistic trends

pipe

Pipe operator

plot_mvgam_factors

Latent factor summaries for a fitted mvgam object

plot_mvgam_forecasts

Plot mvgam posterior predictions for a specified series

plot_mvgam_pterms

Plot mvgam parametric term partial effects

plot_mvgam_randomeffects

Plot mvgam random effect terms

plot_mvgam_resids

Residual diagnostics for a fitted mvgam object

plot_mvgam_series

Plot observed time series used for mvgam modelling

plot_mvgam_smooth

Plot mvgam smooth terms

plot_mvgam_trend

Plot mvgam latent trend for a specified series

plot_mvgam_uncertainty

Plot mvgam forecast uncertainty contributions for a specified series

plot.mvgam_irf

Plot impulse responses from an mvgam_irf object This function takes an...

plot.mvgam_lfo

Plot Pareto-k and ELPD values from a leave-future-out object

plot.mvgam

Default mvgam plots

posterior_epred.mvgam

Draws from the Expected Value of the Posterior Predictive Distribution

posterior_linpred.mvgam

Posterior Draws of the Linear Predictor

posterior_predict.mvgam

Draws from the Posterior Predictive Distribution

pp_check.mvgam

Posterior Predictive Checks for mvgam Objects

ppc.mvgam

Plot mvgam posterior predictive checks for a specified series

predict.mvgam

Predict from the GAM component of an mvgam model

print.mvgam

Summary for a fitted mvgam object

reexports

Objects exported from other packages

residuals.mvgam

Posterior draws of mvgam residuals

RW

Specify autoregressive dynamic processes

score.mvgam_forecast

Compute probabilistic forecast scores for mvgam objects

series_to_mvgam

This function converts univariate or multivariate time series (xts o...

sim_mvgam

Simulate a set of time series for mvgam modelling

summary.mvgam

Summary for a fitted mvgam object

update.mvgam

Update an existing mvgam object

Fit Bayesian Dynamic Generalized Additive Models to sets of time series. Users can build dynamic nonlinear State-Space models that can incorporate semiparametric effects in observation and process components, using a wide range of observation families. Estimation is performed using Markov Chain Monte Carlo with Hamiltonian Monte Carlo in the software 'Stan'. References: Clark & Wells (2022) <doi:10.1111/2041-210X.13974>.

  • Maintainer: Nicholas J Clark
  • License: MIT + file LICENSE
  • Last published: 2024-09-04