Estimates the parameters (namely, alpha, shape matrix Q, and location vector) of the multivariate subgaussian distribution for an input matrix X.
fit_mvss(x)
Arguments
x: a matrix for which the parameters for a d-dimensional multivariate subgaussian distribution will be estimated. The number of columns will be d.
Returns
A list with parameters from the column-wise univariate fits and the multivariate alpha and shape matrix estimates (the univ_deltas are the mult_deltas):
univ_alphas - the alphas from the column-wise univariate fits
univ_betas - the betas from the column-wise univariate fits
univ_gammas - the gammas from the column-wise univariate fits
univ_deltas - the deltas from the column-wise univariate fits
mult_alpha - the mean(univ_alphas); equivalently the multivariate alpha estimate
mult_Q_raw - the multivariate shape matrix estimate (before applying nearPD())
Using the protocols outlined in Nolan (2013), this function uses libstable4u's univariate fit functions for each component.
Examples
## create a 4x4 shape matrix symMatS <- matrix(rnorm(4*4, mean=2, sd=4),4);symMat <- as.matrix(Matrix::nearPD(0.5*(S + t(S)))$mat)symMat
## generate 10,000 r.v.'s from 4-dimensional mvssX <- mvpd::rmvss(1e4, alpha=1.5, Q=symMat, delta=c(1,2,3,4))## use fit_mvss to recover the parameters, compare to symMatfmv <- mvpd::fit_mvss(X)fmv
symMat
## then use the fitted parameters to calculate a probability:mvpd::pmvss(lower=rep(0,4), upper=rep(5,4), alpha=fmv$mult_alpha, Q=fmv$mult_Q_posdef, delta=fmv$univ_deltas, maxpts.pmvnorm =25000*10)
References
Nolan JP (2013), Multivariate elliptically contoured stable distributions: theory and estimation. Comput Stat (2013) 28:2067–2089 DOI 10.1007/s00180-013-0396-7