Computes the probabilities for the multivariate subgaussian stable distribution for arbitrary limits, alpha, shape matrices, and location vectors. See Nolan (2013).
maxpts.pmvnorm: Defaults to 25000. Passed to the F_G = pmvnorm() in the integrand of the outermost integral.
abseps.pmvnorm: Defaults to 1e-3. Passed to the F_G = pmvnorm() in the integrand of the outermost integral.
outermost.int: select which integration function to use for outermost integral. Default is "stats::integrate" and one can specify the following options with the .si suffix. For diagonal Q, one can also specify "cubature::adaptIntegrate" and use the .ai suffix options below (currently there is a bug for non-diagonal Q).
subdivisions.si: the maximum number of subintervals. The suffix .si indicates a stats::integrate()
option for the outermost semi-infinite integral in the product distribution formulation.
rel.tol.si: relative accuracy requested. The suffix .si indicates a stats::integrate()
option for the outermost semi-infinite integral in the product distribution formulation.
abs.tol.si: absolute accuracy requested. The suffix .si indicates a stats::integrate()
option for the outermost semi-infinite integral in the product distribution formulation.
stop.on.error.si: logical. If true (the default) an error stops the function. If false some errors will give a result with a warning in the message component. The suffix .si indicates a stats::integrate()
option for the outermost semi-infinite integral in the product distribution formulation.
tol.ai: The maximum tolerance, default 1e-5. The suffix .ai indicates a cubature::adaptIntegrate type option for the outermost semi-infinite integral in the product distribution formulation.
fDim.ai: The dimension of the integrand, default 1, bears no relation to the dimension of the hypercube The suffix .ai indicates a cubature::adaptIntegrate type option for the outermost semi-infinite integral in the product distribution formulation.
maxEval.ai: The maximum number of function evaluations needed, default 0 implying no limit The suffix .ai indicates a cubature::adaptIntegrate type option for the outermost semi-infinite integral in the product distribution formulation.
absError.ai: The maximum absolute error tolerated The suffix .ai indicates a cubature::adaptIntegrate type option for the outermost semi-infinite integral in the product distribution formulation.
doChecking.ai: A flag to be thorough checking inputs to C routines. A FALSE value results in approximately 9 percent speed gain in our experiments. Your mileage will of course vary. Default value is FALSE. The suffix .ai indicates a cubature::adaptIntegrate type option for the outermost semi-infinite integral in the product distribution formulation.
which.stable: defaults to "libstable4u", other option is "stabledist". Indicates which package should provide the univariate stable distribution in this production distribution form of a univariate stable and multivariate normal.
Returns
The object returned depends on what is selected for outermost.int. In the case of the default, stats::integrate, the value is a list of class "integrate" with components:
valuethe final estimate of the integral.
abs.errorestimate of the modulus of the absolute error.
subdivisionsthe number of subintervals produced in the subdivision process.
message"OK" or a character string giving the error message.
callthe matched call.
Note: The reported abs.error is likely an under-estimate as integrate
assumes the integrand was without error, which is not the case in this application.
Examples
## bivariateU <- c(1,1)L <--U
Q <- matrix(c(10,7.5,7.5,10),2)mvpd::pmvss(L, U, alpha=1.71, Q=Q)## trivariateU <- c(1,1,1)L <--U
Q <- matrix(c(10,7.5,7.5,7.5,10,7.5,7.5,7.5,10),3)mvpd::pmvss(L, U, alpha=1.71, Q=Q)## How `delta` works: same as centeringU <- c(1,1,1)L <--U
Q <- matrix(c(10,7.5,7.5,7.5,10,7.5,7.5,7.5,10),3)D <- c(0.75,0.65,-0.35)mvpd::pmvss(L-D, U-D, alpha=1.71, Q=Q)mvpd::pmvss(L , U , alpha=1.71, Q=Q, delta=D)
References
Nolan JP (2013), Multivariate elliptically contoured stable distributions: theory and estimation. Comput Stat (2013) 28:2067–2089 DOI 10.1007/s00180-013-0396-7