Monte Carlo Multivariate Subgaussian Stable Distribution
Monte Carlo Multivariate Subgaussian Stable Distribution
Computes probabilities of the multivariate subgaussian stable distribution for arbitrary limits, alpha, shape matrices, and location vectors via Monte Carlo (thus the suffix _mc).
which.stable: defaults to "libstable4u", other option is "stabledist". Indicates which package should provide the univariate stable distribution in this production distribution form of a univariate stable and multivariate normal.
n: number of random vectors to be drawn for Monte Carlo calculation.
Returns
a number between 0 and 1, the estimated probability via Monte Carlo
Examples
## print("mvpd (d=2, alpha=1.71):")U <- c(1,1)L <--U
Q <- matrix(c(10,7.5,7.5,10),2)mvpd::pmvss_mc(L, U, alpha=1.71, Q=Q, n=1e3)mvpd::pmvss (L, U, alpha=1.71, Q=Q)## more accuracy = longer runtimemvpd::pmvss_mc(L, U, alpha=1.71, Q=Q, n=1e4)U <- c(1,1,1)L <--U
Q <- matrix(c(10,7.5,7.5,7.5,10,7.5,7.5,7.5,10),3)## print("mvpd: (d=3, alpha=1.71):")mvpd::pmvss_mc(L, U, alpha=1.71, Q=Q, n=1e3)
References
Nolan JP (2013), Multivariate elliptically contoured stable distributions: theory and estimation. Comput Stat (2013) 28:2067–2089 DOI 10.1007/s00180-013-0396-7