rmvss function

Multivariate Subgaussian Stable Random Variates

Multivariate Subgaussian Stable Random Variates

Computes random vectors of the multivariate subgaussian stable distribution for arbitrary alpha, shape matrices, and location vectors. See Nolan (2013).

rmvss( n, alpha = 1, Q = NULL, delta = rep(0, d), which.stable = c("libstable4u", "stabledist")[1] )

Arguments

  • n: number of observations
  • alpha: default to 1 (Cauchy). Must be 0<alpha<2
  • Q: Shape matrix. See Nolan (2013).
  • delta: location vector.
  • which.stable: defaults to "libstable4u", other option is "stabledist". Indicates which package should provide the univariate stable distribution in this production distribution form of a univariate stable and multivariate normal.

Returns

Returns the n by d matrix containing multivariate subgaussian stable random variates where d=nrow(Q).

Examples

## generate 10 random variates of a bivariate mvss rmvss(n=10, alpha=1.71, Q=matrix(c(10,7.5,7.5,10),2)) ## generate 10 random variates of a trivariate mvss Q <- matrix(c(10,7.5,7.5,7.5,10,7.5,7.5,7.5,10),3) rmvss(n=10, alpha=1.71, Q=Q)

References

Nolan JP (2013), Multivariate elliptically contoured stable distributions: theory and estimation. Comput Stat (2013) 28:2067–2089 DOI 10.1007/s00180-013-0396-7

  • Maintainer: Bruce Swihart
  • License: MIT + file LICENSE
  • Last published: 2023-09-03