run_mfpca function

run_fpca

run_fpca

This is a wrapper for the function mfpca.face from the refund package. EXPAND

run_mfpca( mxFDAobject, metric = "uni k", r = "r", value = "fundiff", knots = NULL, lightweight = FALSE, ... )

Arguments

  • mxFDAobject: object of class mxFDA created by make_mxfda() with metrics derived with extract_summary_functions()
  • metric: name of calculated spatial metric to use
  • r: Character string, the name of the variable that identifies the function domain (usually a radius for spatial summary functions). Default is "r".
  • value: Character string, the name of the variable that identifies the spatial summary function values. Default is "fundiff".
  • knots: Number of knots for defining spline basis.Defaults to the number of measurements per function divided by 2.
  • lightweight: Default is FALSE. If TRUE, removes Y and Yhat from returned mFPCA object. A good option to select for large datasets.
  • ...: Optional other arguments to be passed to mfpca.face

Returns

A mxFDA object with the functional_mpca slot for the respective spatial summary function containing: - mxfundata: The original dataframe of spatial summary functions, with scores from FPCA appended for downstream modeling

  • fpc_object: A list of class "fpca" with elements described in the documentation for refund::fpca.face

Details

Examples

#load data data(lung_FDA) #run mixed fpca lung_FDA = run_mfpca(lung_FDA, metric = 'uni g')

References

Xiao, L., Ruppert, D., Zipunnikov, V., and Crainiceanu, C. (2016). Fast covariance estimation for high-dimensional functional data. Statistics and Computing, 26, 409-421. DOI: 10.1007/s11222-014-9485-x.

Author(s)

unknown first.last@domain.extension

Julia Wrobel julia.wrobel@emory.edu

Alex Soupir alex.soupir@moffitt.org